Metamath Proof Explorer
Description: A set containing an uncountable set is itself uncountable. (Contributed by Glauco Siliprandi, 3-Jan-2021)
|
|
Ref |
Expression |
|
Hypotheses |
ssnct.1 |
⊢ ( 𝜑 → ¬ 𝐴 ≼ ω ) |
|
|
ssnct.2 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
|
Assertion |
ssnct |
⊢ ( 𝜑 → ¬ 𝐵 ≼ ω ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ssnct.1 |
⊢ ( 𝜑 → ¬ 𝐴 ≼ ω ) |
2 |
|
ssnct.2 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
3 |
|
ssct |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ≼ ω ) → 𝐴 ≼ ω ) |
4 |
2 3
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐵 ≼ ω ) → 𝐴 ≼ ω ) |
5 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≼ ω ) → ¬ 𝐴 ≼ ω ) |
6 |
4 5
|
pm2.65da |
⊢ ( 𝜑 → ¬ 𝐵 ≼ ω ) |