Metamath Proof Explorer


Theorem ssnct

Description: A set containing an uncountable set is itself uncountable. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses ssnct.1 ( 𝜑 → ¬ 𝐴 ≼ ω )
ssnct.2 ( 𝜑𝐴𝐵 )
Assertion ssnct ( 𝜑 → ¬ 𝐵 ≼ ω )

Proof

Step Hyp Ref Expression
1 ssnct.1 ( 𝜑 → ¬ 𝐴 ≼ ω )
2 ssnct.2 ( 𝜑𝐴𝐵 )
3 ssct ( ( 𝐴𝐵𝐵 ≼ ω ) → 𝐴 ≼ ω )
4 2 3 sylan ( ( 𝜑𝐵 ≼ ω ) → 𝐴 ≼ ω )
5 1 adantr ( ( 𝜑𝐵 ≼ ω ) → ¬ 𝐴 ≼ ω )
6 4 5 pm2.65da ( 𝜑 → ¬ 𝐵 ≼ ω )