Description: If not element of a set, then not element of a subset. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssnel | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐶 ∈ 𝐵 ) → ¬ 𝐶 ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel2 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ∈ 𝐴 ) → 𝐶 ∈ 𝐵 ) | |
| 2 | 1 | stoic1a | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐶 ∈ 𝐵 ) → ¬ 𝐶 ∈ 𝐴 ) |