Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Subclasses and subsets
ssnelpssd
Metamath Proof Explorer
Description: Subclass inclusion with one element of the superclass missing is proper
subclass inclusion. Deduction form of ssnelpss . (Contributed by David Moews , 1-May-2017)
Ref
Expression
Hypotheses
ssnelpssd.1
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 )
ssnelpssd.2
⊢ ( 𝜑 → 𝐶 ∈ 𝐵 )
ssnelpssd.3
⊢ ( 𝜑 → ¬ 𝐶 ∈ 𝐴 )
Assertion
ssnelpssd
⊢ ( 𝜑 → 𝐴 ⊊ 𝐵 )
Proof
Step
Hyp
Ref
Expression
1
ssnelpssd.1
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 )
2
ssnelpssd.2
⊢ ( 𝜑 → 𝐶 ∈ 𝐵 )
3
ssnelpssd.3
⊢ ( 𝜑 → ¬ 𝐶 ∈ 𝐴 )
4
ssnelpss
⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝐶 ∈ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴 ) → 𝐴 ⊊ 𝐵 ) )
5
1 4
syl
⊢ ( 𝜑 → ( ( 𝐶 ∈ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴 ) → 𝐴 ⊊ 𝐵 ) )
6
2 3 5
mp2and
⊢ ( 𝜑 → 𝐴 ⊊ 𝐵 )