Metamath Proof Explorer


Theorem ssnelpssd

Description: Subclass inclusion with one element of the superclass missing is proper subclass inclusion. Deduction form of ssnelpss . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses ssnelpssd.1 ( 𝜑𝐴𝐵 )
ssnelpssd.2 ( 𝜑𝐶𝐵 )
ssnelpssd.3 ( 𝜑 → ¬ 𝐶𝐴 )
Assertion ssnelpssd ( 𝜑𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 ssnelpssd.1 ( 𝜑𝐴𝐵 )
2 ssnelpssd.2 ( 𝜑𝐶𝐵 )
3 ssnelpssd.3 ( 𝜑 → ¬ 𝐶𝐴 )
4 ssnelpss ( 𝐴𝐵 → ( ( 𝐶𝐵 ∧ ¬ 𝐶𝐴 ) → 𝐴𝐵 ) )
5 1 4 syl ( 𝜑 → ( ( 𝐶𝐵 ∧ ¬ 𝐶𝐴 ) → 𝐴𝐵 ) )
6 2 3 5 mp2and ( 𝜑𝐴𝐵 )