| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limom |
⊢ Lim ω |
| 2 |
|
ssel |
⊢ ( 𝐴 ⊆ { 𝑥 ∈ On ∣ ¬ Lim 𝑥 } → ( ω ∈ 𝐴 → ω ∈ { 𝑥 ∈ On ∣ ¬ Lim 𝑥 } ) ) |
| 3 |
|
limeq |
⊢ ( 𝑥 = ω → ( Lim 𝑥 ↔ Lim ω ) ) |
| 4 |
3
|
notbid |
⊢ ( 𝑥 = ω → ( ¬ Lim 𝑥 ↔ ¬ Lim ω ) ) |
| 5 |
4
|
elrab |
⊢ ( ω ∈ { 𝑥 ∈ On ∣ ¬ Lim 𝑥 } ↔ ( ω ∈ On ∧ ¬ Lim ω ) ) |
| 6 |
5
|
simprbi |
⊢ ( ω ∈ { 𝑥 ∈ On ∣ ¬ Lim 𝑥 } → ¬ Lim ω ) |
| 7 |
2 6
|
syl6 |
⊢ ( 𝐴 ⊆ { 𝑥 ∈ On ∣ ¬ Lim 𝑥 } → ( ω ∈ 𝐴 → ¬ Lim ω ) ) |
| 8 |
1 7
|
mt2i |
⊢ ( 𝐴 ⊆ { 𝑥 ∈ On ∣ ¬ Lim 𝑥 } → ¬ ω ∈ 𝐴 ) |
| 9 |
8
|
adantl |
⊢ ( ( Ord 𝐴 ∧ 𝐴 ⊆ { 𝑥 ∈ On ∣ ¬ Lim 𝑥 } ) → ¬ ω ∈ 𝐴 ) |
| 10 |
|
ordom |
⊢ Ord ω |
| 11 |
|
ordtri1 |
⊢ ( ( Ord 𝐴 ∧ Ord ω ) → ( 𝐴 ⊆ ω ↔ ¬ ω ∈ 𝐴 ) ) |
| 12 |
10 11
|
mpan2 |
⊢ ( Ord 𝐴 → ( 𝐴 ⊆ ω ↔ ¬ ω ∈ 𝐴 ) ) |
| 13 |
12
|
adantr |
⊢ ( ( Ord 𝐴 ∧ 𝐴 ⊆ { 𝑥 ∈ On ∣ ¬ Lim 𝑥 } ) → ( 𝐴 ⊆ ω ↔ ¬ ω ∈ 𝐴 ) ) |
| 14 |
9 13
|
mpbird |
⊢ ( ( Ord 𝐴 ∧ 𝐴 ⊆ { 𝑥 ∈ On ∣ ¬ Lim 𝑥 } ) → 𝐴 ⊆ ω ) |