| Step | Hyp | Ref | Expression | 
						
							| 1 |  | limom | ⊢ Lim  ω | 
						
							| 2 |  | ssel | ⊢ ( 𝐴  ⊆  { 𝑥  ∈  On  ∣  ¬  Lim  𝑥 }  →  ( ω  ∈  𝐴  →  ω  ∈  { 𝑥  ∈  On  ∣  ¬  Lim  𝑥 } ) ) | 
						
							| 3 |  | limeq | ⊢ ( 𝑥  =  ω  →  ( Lim  𝑥  ↔  Lim  ω ) ) | 
						
							| 4 | 3 | notbid | ⊢ ( 𝑥  =  ω  →  ( ¬  Lim  𝑥  ↔  ¬  Lim  ω ) ) | 
						
							| 5 | 4 | elrab | ⊢ ( ω  ∈  { 𝑥  ∈  On  ∣  ¬  Lim  𝑥 }  ↔  ( ω  ∈  On  ∧  ¬  Lim  ω ) ) | 
						
							| 6 | 5 | simprbi | ⊢ ( ω  ∈  { 𝑥  ∈  On  ∣  ¬  Lim  𝑥 }  →  ¬  Lim  ω ) | 
						
							| 7 | 2 6 | syl6 | ⊢ ( 𝐴  ⊆  { 𝑥  ∈  On  ∣  ¬  Lim  𝑥 }  →  ( ω  ∈  𝐴  →  ¬  Lim  ω ) ) | 
						
							| 8 | 1 7 | mt2i | ⊢ ( 𝐴  ⊆  { 𝑥  ∈  On  ∣  ¬  Lim  𝑥 }  →  ¬  ω  ∈  𝐴 ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( Ord  𝐴  ∧  𝐴  ⊆  { 𝑥  ∈  On  ∣  ¬  Lim  𝑥 } )  →  ¬  ω  ∈  𝐴 ) | 
						
							| 10 |  | ordom | ⊢ Ord  ω | 
						
							| 11 |  | ordtri1 | ⊢ ( ( Ord  𝐴  ∧  Ord  ω )  →  ( 𝐴  ⊆  ω  ↔  ¬  ω  ∈  𝐴 ) ) | 
						
							| 12 | 10 11 | mpan2 | ⊢ ( Ord  𝐴  →  ( 𝐴  ⊆  ω  ↔  ¬  ω  ∈  𝐴 ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( Ord  𝐴  ∧  𝐴  ⊆  { 𝑥  ∈  On  ∣  ¬  Lim  𝑥 } )  →  ( 𝐴  ⊆  ω  ↔  ¬  ω  ∈  𝐴 ) ) | 
						
							| 14 | 9 13 | mpbird | ⊢ ( ( Ord  𝐴  ∧  𝐴  ⊆  { 𝑥  ∈  On  ∣  ¬  Lim  𝑥 } )  →  𝐴  ⊆  ω ) |