Step |
Hyp |
Ref |
Expression |
1 |
|
sspss |
⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐵 ⊊ 𝐴 ∨ 𝐵 = 𝐴 ) ) |
2 |
|
pssnn |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴 ) → ∃ 𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 ) |
3 |
|
elnn |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐴 ∈ ω ) → 𝑥 ∈ ω ) |
4 |
3
|
expcom |
⊢ ( 𝐴 ∈ ω → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ω ) ) |
5 |
4
|
anim1d |
⊢ ( 𝐴 ∈ ω → ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ≈ 𝑥 ) → ( 𝑥 ∈ ω ∧ 𝐵 ≈ 𝑥 ) ) ) |
6 |
5
|
reximdv2 |
⊢ ( 𝐴 ∈ ω → ( ∃ 𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 → ∃ 𝑥 ∈ ω 𝐵 ≈ 𝑥 ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴 ) → ( ∃ 𝑥 ∈ 𝐴 𝐵 ≈ 𝑥 → ∃ 𝑥 ∈ ω 𝐵 ≈ 𝑥 ) ) |
8 |
2 7
|
mpd |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴 ) → ∃ 𝑥 ∈ ω 𝐵 ≈ 𝑥 ) |
9 |
|
eleq1 |
⊢ ( 𝐵 = 𝐴 → ( 𝐵 ∈ ω ↔ 𝐴 ∈ ω ) ) |
10 |
9
|
biimparc |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 = 𝐴 ) → 𝐵 ∈ ω ) |
11 |
|
enrefnn |
⊢ ( 𝐵 ∈ ω → 𝐵 ≈ 𝐵 ) |
12 |
|
breq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐵 ≈ 𝑥 ↔ 𝐵 ≈ 𝐵 ) ) |
13 |
12
|
rspcev |
⊢ ( ( 𝐵 ∈ ω ∧ 𝐵 ≈ 𝐵 ) → ∃ 𝑥 ∈ ω 𝐵 ≈ 𝑥 ) |
14 |
10 11 13
|
syl2anc2 |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 = 𝐴 ) → ∃ 𝑥 ∈ ω 𝐵 ≈ 𝑥 ) |
15 |
8 14
|
jaodan |
⊢ ( ( 𝐴 ∈ ω ∧ ( 𝐵 ⊊ 𝐴 ∨ 𝐵 = 𝐴 ) ) → ∃ 𝑥 ∈ ω 𝐵 ≈ 𝑥 ) |
16 |
1 15
|
sylan2b |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ω 𝐵 ≈ 𝑥 ) |
17 |
|
isfi |
⊢ ( 𝐵 ∈ Fin ↔ ∃ 𝑥 ∈ ω 𝐵 ≈ 𝑥 ) |
18 |
16 17
|
sylibr |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ Fin ) |