Step |
Hyp |
Ref |
Expression |
1 |
|
clscld.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
elin |
⊢ ( 𝑂 ∈ ( 𝐽 ∩ 𝒫 𝑆 ) ↔ ( 𝑂 ∈ 𝐽 ∧ 𝑂 ∈ 𝒫 𝑆 ) ) |
3 |
|
elpwg |
⊢ ( 𝑂 ∈ 𝐽 → ( 𝑂 ∈ 𝒫 𝑆 ↔ 𝑂 ⊆ 𝑆 ) ) |
4 |
3
|
pm5.32i |
⊢ ( ( 𝑂 ∈ 𝐽 ∧ 𝑂 ∈ 𝒫 𝑆 ) ↔ ( 𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆 ) ) |
5 |
2 4
|
bitr2i |
⊢ ( ( 𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆 ) ↔ 𝑂 ∈ ( 𝐽 ∩ 𝒫 𝑆 ) ) |
6 |
|
elssuni |
⊢ ( 𝑂 ∈ ( 𝐽 ∩ 𝒫 𝑆 ) → 𝑂 ⊆ ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ) |
7 |
5 6
|
sylbi |
⊢ ( ( 𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆 ) → 𝑂 ⊆ ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ) |
8 |
7
|
adantl |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆 ) ) → 𝑂 ⊆ ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ) |
9 |
1
|
ntrval |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ) |
10 |
9
|
adantr |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆 ) ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∪ ( 𝐽 ∩ 𝒫 𝑆 ) ) |
11 |
8 10
|
sseqtrrd |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆 ) ) → 𝑂 ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) |