Metamath Proof Explorer


Theorem ssonuni

Description: The union of a set of ordinal numbers is an ordinal number. Theorem 9 of Suppes p. 132. (Contributed by NM, 1-Nov-2003)

Ref Expression
Assertion ssonuni ( 𝐴𝑉 → ( 𝐴 ⊆ On → 𝐴 ∈ On ) )

Proof

Step Hyp Ref Expression
1 ssorduni ( 𝐴 ⊆ On → Ord 𝐴 )
2 uniexg ( 𝐴𝑉 𝐴 ∈ V )
3 elong ( 𝐴 ∈ V → ( 𝐴 ∈ On ↔ Ord 𝐴 ) )
4 2 3 syl ( 𝐴𝑉 → ( 𝐴 ∈ On ↔ Ord 𝐴 ) )
5 1 4 syl5ibr ( 𝐴𝑉 → ( 𝐴 ⊆ On → 𝐴 ∈ On ) )