Step |
Hyp |
Ref |
Expression |
1 |
|
padd0.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
2 |
|
padd0.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
3 |
|
ssun2 |
⊢ 𝑋 ⊆ ( 𝑌 ∪ 𝑋 ) |
4 |
|
ssun1 |
⊢ ( 𝑌 ∪ 𝑋 ) ⊆ ( ( 𝑌 ∪ 𝑋 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑌 ∃ 𝑟 ∈ 𝑋 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) } ) |
5 |
3 4
|
sstri |
⊢ 𝑋 ⊆ ( ( 𝑌 ∪ 𝑋 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑌 ∃ 𝑟 ∈ 𝑋 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) } ) |
6 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
7 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
8 |
6 7 1 2
|
paddval |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑌 + 𝑋 ) = ( ( 𝑌 ∪ 𝑋 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑌 ∃ 𝑟 ∈ 𝑋 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) } ) ) |
9 |
8
|
3com23 |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑌 + 𝑋 ) = ( ( 𝑌 ∪ 𝑋 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑌 ∃ 𝑟 ∈ 𝑋 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) } ) ) |
10 |
5 9
|
sseqtrrid |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → 𝑋 ⊆ ( 𝑌 + 𝑋 ) ) |