Metamath Proof Explorer


Theorem sspadd2

Description: A projective subspace sum is a superset of its second summand. ( ssun2 analog.) (Contributed by NM, 3-Jan-2012)

Ref Expression
Hypotheses padd0.a 𝐴 = ( Atoms ‘ 𝐾 )
padd0.p + = ( +𝑃𝐾 )
Assertion sspadd2 ( ( 𝐾𝐵𝑋𝐴𝑌𝐴 ) → 𝑋 ⊆ ( 𝑌 + 𝑋 ) )

Proof

Step Hyp Ref Expression
1 padd0.a 𝐴 = ( Atoms ‘ 𝐾 )
2 padd0.p + = ( +𝑃𝐾 )
3 ssun2 𝑋 ⊆ ( 𝑌𝑋 )
4 ssun1 ( 𝑌𝑋 ) ⊆ ( ( 𝑌𝑋 ) ∪ { 𝑝𝐴 ∣ ∃ 𝑞𝑌𝑟𝑋 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) } )
5 3 4 sstri 𝑋 ⊆ ( ( 𝑌𝑋 ) ∪ { 𝑝𝐴 ∣ ∃ 𝑞𝑌𝑟𝑋 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) } )
6 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
7 eqid ( join ‘ 𝐾 ) = ( join ‘ 𝐾 )
8 6 7 1 2 paddval ( ( 𝐾𝐵𝑌𝐴𝑋𝐴 ) → ( 𝑌 + 𝑋 ) = ( ( 𝑌𝑋 ) ∪ { 𝑝𝐴 ∣ ∃ 𝑞𝑌𝑟𝑋 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) } ) )
9 8 3com23 ( ( 𝐾𝐵𝑋𝐴𝑌𝐴 ) → ( 𝑌 + 𝑋 ) = ( ( 𝑌𝑋 ) ∪ { 𝑝𝐴 ∣ ∃ 𝑞𝑌𝑟𝑋 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) } ) )
10 5 9 sseqtrrid ( ( 𝐾𝐵𝑋𝐴𝑌𝐴 ) → 𝑋 ⊆ ( 𝑌 + 𝑋 ) )