Metamath Proof Explorer


Theorem sspba

Description: The base set of a subspace is included in the parent base set. (Contributed by NM, 27-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses sspba.x 𝑋 = ( BaseSet ‘ 𝑈 )
sspba.y 𝑌 = ( BaseSet ‘ 𝑊 )
sspba.h 𝐻 = ( SubSp ‘ 𝑈 )
Assertion sspba ( ( 𝑈 ∈ NrmCVec ∧ 𝑊𝐻 ) → 𝑌𝑋 )

Proof

Step Hyp Ref Expression
1 sspba.x 𝑋 = ( BaseSet ‘ 𝑈 )
2 sspba.y 𝑌 = ( BaseSet ‘ 𝑊 )
3 sspba.h 𝐻 = ( SubSp ‘ 𝑈 )
4 eqid ( +𝑣𝑈 ) = ( +𝑣𝑈 )
5 eqid ( +𝑣𝑊 ) = ( +𝑣𝑊 )
6 eqid ( ·𝑠OLD𝑈 ) = ( ·𝑠OLD𝑈 )
7 eqid ( ·𝑠OLD𝑊 ) = ( ·𝑠OLD𝑊 )
8 eqid ( normCV𝑈 ) = ( normCV𝑈 )
9 eqid ( normCV𝑊 ) = ( normCV𝑊 )
10 4 5 6 7 8 9 3 isssp ( 𝑈 ∈ NrmCVec → ( 𝑊𝐻 ↔ ( 𝑊 ∈ NrmCVec ∧ ( ( +𝑣𝑊 ) ⊆ ( +𝑣𝑈 ) ∧ ( ·𝑠OLD𝑊 ) ⊆ ( ·𝑠OLD𝑈 ) ∧ ( normCV𝑊 ) ⊆ ( normCV𝑈 ) ) ) ) )
11 10 simplbda ( ( 𝑈 ∈ NrmCVec ∧ 𝑊𝐻 ) → ( ( +𝑣𝑊 ) ⊆ ( +𝑣𝑈 ) ∧ ( ·𝑠OLD𝑊 ) ⊆ ( ·𝑠OLD𝑈 ) ∧ ( normCV𝑊 ) ⊆ ( normCV𝑈 ) ) )
12 11 simp1d ( ( 𝑈 ∈ NrmCVec ∧ 𝑊𝐻 ) → ( +𝑣𝑊 ) ⊆ ( +𝑣𝑈 ) )
13 rnss ( ( +𝑣𝑊 ) ⊆ ( +𝑣𝑈 ) → ran ( +𝑣𝑊 ) ⊆ ran ( +𝑣𝑈 ) )
14 12 13 syl ( ( 𝑈 ∈ NrmCVec ∧ 𝑊𝐻 ) → ran ( +𝑣𝑊 ) ⊆ ran ( +𝑣𝑈 ) )
15 2 5 bafval 𝑌 = ran ( +𝑣𝑊 )
16 1 4 bafval 𝑋 = ran ( +𝑣𝑈 )
17 14 15 16 3sstr4g ( ( 𝑈 ∈ NrmCVec ∧ 𝑊𝐻 ) → 𝑌𝑋 )