| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sspba.x | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | sspba.y | ⊢ 𝑌  =  ( BaseSet ‘ 𝑊 ) | 
						
							| 3 |  | sspba.h | ⊢ 𝐻  =  ( SubSp ‘ 𝑈 ) | 
						
							| 4 |  | eqid | ⊢ (  +𝑣  ‘ 𝑈 )  =  (  +𝑣  ‘ 𝑈 ) | 
						
							| 5 |  | eqid | ⊢ (  +𝑣  ‘ 𝑊 )  =  (  +𝑣  ‘ 𝑊 ) | 
						
							| 6 |  | eqid | ⊢ (  ·𝑠OLD  ‘ 𝑈 )  =  (  ·𝑠OLD  ‘ 𝑈 ) | 
						
							| 7 |  | eqid | ⊢ (  ·𝑠OLD  ‘ 𝑊 )  =  (  ·𝑠OLD  ‘ 𝑊 ) | 
						
							| 8 |  | eqid | ⊢ ( normCV ‘ 𝑈 )  =  ( normCV ‘ 𝑈 ) | 
						
							| 9 |  | eqid | ⊢ ( normCV ‘ 𝑊 )  =  ( normCV ‘ 𝑊 ) | 
						
							| 10 | 4 5 6 7 8 9 3 | isssp | ⊢ ( 𝑈  ∈  NrmCVec  →  ( 𝑊  ∈  𝐻  ↔  ( 𝑊  ∈  NrmCVec  ∧  ( (  +𝑣  ‘ 𝑊 )  ⊆  (  +𝑣  ‘ 𝑈 )  ∧  (  ·𝑠OLD  ‘ 𝑊 )  ⊆  (  ·𝑠OLD  ‘ 𝑈 )  ∧  ( normCV ‘ 𝑊 )  ⊆  ( normCV ‘ 𝑈 ) ) ) ) ) | 
						
							| 11 | 10 | simplbda | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  𝐻 )  →  ( (  +𝑣  ‘ 𝑊 )  ⊆  (  +𝑣  ‘ 𝑈 )  ∧  (  ·𝑠OLD  ‘ 𝑊 )  ⊆  (  ·𝑠OLD  ‘ 𝑈 )  ∧  ( normCV ‘ 𝑊 )  ⊆  ( normCV ‘ 𝑈 ) ) ) | 
						
							| 12 | 11 | simp1d | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  𝐻 )  →  (  +𝑣  ‘ 𝑊 )  ⊆  (  +𝑣  ‘ 𝑈 ) ) | 
						
							| 13 |  | rnss | ⊢ ( (  +𝑣  ‘ 𝑊 )  ⊆  (  +𝑣  ‘ 𝑈 )  →  ran  (  +𝑣  ‘ 𝑊 )  ⊆  ran  (  +𝑣  ‘ 𝑈 ) ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  𝐻 )  →  ran  (  +𝑣  ‘ 𝑊 )  ⊆  ran  (  +𝑣  ‘ 𝑈 ) ) | 
						
							| 15 | 2 5 | bafval | ⊢ 𝑌  =  ran  (  +𝑣  ‘ 𝑊 ) | 
						
							| 16 | 1 4 | bafval | ⊢ 𝑋  =  ran  (  +𝑣  ‘ 𝑈 ) | 
						
							| 17 | 14 15 16 | 3sstr4g | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  𝐻 )  →  𝑌  ⊆  𝑋 ) |