Step |
Hyp |
Ref |
Expression |
1 |
|
sspg.y |
⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) |
2 |
|
sspg.g |
⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) |
3 |
|
sspg.f |
⊢ 𝐹 = ( +𝑣 ‘ 𝑊 ) |
4 |
|
sspg.h |
⊢ 𝐻 = ( SubSp ‘ 𝑈 ) |
5 |
|
eqid |
⊢ ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 ) |
6 |
5 2
|
nvgf |
⊢ ( 𝑈 ∈ NrmCVec → 𝐺 : ( ( BaseSet ‘ 𝑈 ) × ( BaseSet ‘ 𝑈 ) ) ⟶ ( BaseSet ‘ 𝑈 ) ) |
7 |
6
|
ffund |
⊢ ( 𝑈 ∈ NrmCVec → Fun 𝐺 ) |
8 |
7
|
funresd |
⊢ ( 𝑈 ∈ NrmCVec → Fun ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → Fun ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) ) |
10 |
4
|
sspnv |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑊 ∈ NrmCVec ) |
11 |
1 3
|
nvgf |
⊢ ( 𝑊 ∈ NrmCVec → 𝐹 : ( 𝑌 × 𝑌 ) ⟶ 𝑌 ) |
12 |
10 11
|
syl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝐹 : ( 𝑌 × 𝑌 ) ⟶ 𝑌 ) |
13 |
12
|
ffnd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝐹 Fn ( 𝑌 × 𝑌 ) ) |
14 |
|
fnresdm |
⊢ ( 𝐹 Fn ( 𝑌 × 𝑌 ) → ( 𝐹 ↾ ( 𝑌 × 𝑌 ) ) = 𝐹 ) |
15 |
13 14
|
syl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝐹 ↾ ( 𝑌 × 𝑌 ) ) = 𝐹 ) |
16 |
|
eqid |
⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) |
17 |
|
eqid |
⊢ ( ·𝑠OLD ‘ 𝑊 ) = ( ·𝑠OLD ‘ 𝑊 ) |
18 |
|
eqid |
⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) |
19 |
|
eqid |
⊢ ( normCV ‘ 𝑊 ) = ( normCV ‘ 𝑊 ) |
20 |
2 3 16 17 18 19 4
|
isssp |
⊢ ( 𝑈 ∈ NrmCVec → ( 𝑊 ∈ 𝐻 ↔ ( 𝑊 ∈ NrmCVec ∧ ( 𝐹 ⊆ 𝐺 ∧ ( ·𝑠OLD ‘ 𝑊 ) ⊆ ( ·𝑠OLD ‘ 𝑈 ) ∧ ( normCV ‘ 𝑊 ) ⊆ ( normCV ‘ 𝑈 ) ) ) ) ) |
21 |
20
|
simplbda |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝐹 ⊆ 𝐺 ∧ ( ·𝑠OLD ‘ 𝑊 ) ⊆ ( ·𝑠OLD ‘ 𝑈 ) ∧ ( normCV ‘ 𝑊 ) ⊆ ( normCV ‘ 𝑈 ) ) ) |
22 |
21
|
simp1d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝐹 ⊆ 𝐺 ) |
23 |
|
ssres |
⊢ ( 𝐹 ⊆ 𝐺 → ( 𝐹 ↾ ( 𝑌 × 𝑌 ) ) ⊆ ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) ) |
24 |
22 23
|
syl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝐹 ↾ ( 𝑌 × 𝑌 ) ) ⊆ ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) ) |
25 |
15 24
|
eqsstrrd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝐹 ⊆ ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) ) |
26 |
9 13 25
|
3jca |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( Fun ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) ∧ 𝐹 Fn ( 𝑌 × 𝑌 ) ∧ 𝐹 ⊆ ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) ) ) |
27 |
|
oprssov |
⊢ ( ( ( Fun ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) ∧ 𝐹 Fn ( 𝑌 × 𝑌 ) ∧ 𝐹 ⊆ ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑦 ) = ( 𝑥 𝐹 𝑦 ) ) |
28 |
26 27
|
sylan |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑦 ) = ( 𝑥 𝐹 𝑦 ) ) |
29 |
28
|
eqcomd |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 𝐹 𝑦 ) = ( 𝑥 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑦 ) ) |
30 |
29
|
ralrimivva |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝐹 𝑦 ) = ( 𝑥 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑦 ) ) |
31 |
|
eqid |
⊢ ( 𝑌 × 𝑌 ) = ( 𝑌 × 𝑌 ) |
32 |
30 31
|
jctil |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( ( 𝑌 × 𝑌 ) = ( 𝑌 × 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝐹 𝑦 ) = ( 𝑥 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑦 ) ) ) |
33 |
6
|
ffnd |
⊢ ( 𝑈 ∈ NrmCVec → 𝐺 Fn ( ( BaseSet ‘ 𝑈 ) × ( BaseSet ‘ 𝑈 ) ) ) |
34 |
33
|
adantr |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝐺 Fn ( ( BaseSet ‘ 𝑈 ) × ( BaseSet ‘ 𝑈 ) ) ) |
35 |
5 1 4
|
sspba |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑌 ⊆ ( BaseSet ‘ 𝑈 ) ) |
36 |
|
xpss12 |
⊢ ( ( 𝑌 ⊆ ( BaseSet ‘ 𝑈 ) ∧ 𝑌 ⊆ ( BaseSet ‘ 𝑈 ) ) → ( 𝑌 × 𝑌 ) ⊆ ( ( BaseSet ‘ 𝑈 ) × ( BaseSet ‘ 𝑈 ) ) ) |
37 |
35 35 36
|
syl2anc |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝑌 × 𝑌 ) ⊆ ( ( BaseSet ‘ 𝑈 ) × ( BaseSet ‘ 𝑈 ) ) ) |
38 |
|
fnssres |
⊢ ( ( 𝐺 Fn ( ( BaseSet ‘ 𝑈 ) × ( BaseSet ‘ 𝑈 ) ) ∧ ( 𝑌 × 𝑌 ) ⊆ ( ( BaseSet ‘ 𝑈 ) × ( BaseSet ‘ 𝑈 ) ) ) → ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) Fn ( 𝑌 × 𝑌 ) ) |
39 |
34 37 38
|
syl2anc |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) Fn ( 𝑌 × 𝑌 ) ) |
40 |
|
eqfnov |
⊢ ( ( 𝐹 Fn ( 𝑌 × 𝑌 ) ∧ ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) Fn ( 𝑌 × 𝑌 ) ) → ( 𝐹 = ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) ↔ ( ( 𝑌 × 𝑌 ) = ( 𝑌 × 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝐹 𝑦 ) = ( 𝑥 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑦 ) ) ) ) |
41 |
13 39 40
|
syl2anc |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝐹 = ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) ↔ ( ( 𝑌 × 𝑌 ) = ( 𝑌 × 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝐹 𝑦 ) = ( 𝑥 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑦 ) ) ) ) |
42 |
32 41
|
mpbird |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝐹 = ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) ) |