| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sspims.y |
⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) |
| 2 |
|
sspims.d |
⊢ 𝐷 = ( IndMet ‘ 𝑈 ) |
| 3 |
|
sspims.c |
⊢ 𝐶 = ( IndMet ‘ 𝑊 ) |
| 4 |
|
sspims.h |
⊢ 𝐻 = ( SubSp ‘ 𝑈 ) |
| 5 |
4
|
sspnv |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑊 ∈ NrmCVec ) |
| 6 |
|
eqid |
⊢ ( −𝑣 ‘ 𝑊 ) = ( −𝑣 ‘ 𝑊 ) |
| 7 |
1 6
|
nvmcl |
⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) → ( 𝐴 ( −𝑣 ‘ 𝑊 ) 𝐵 ) ∈ 𝑌 ) |
| 8 |
7
|
3expb |
⊢ ( ( 𝑊 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 ( −𝑣 ‘ 𝑊 ) 𝐵 ) ∈ 𝑌 ) |
| 9 |
5 8
|
sylan |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 ( −𝑣 ‘ 𝑊 ) 𝐵 ) ∈ 𝑌 ) |
| 10 |
|
eqid |
⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) |
| 11 |
|
eqid |
⊢ ( normCV ‘ 𝑊 ) = ( normCV ‘ 𝑊 ) |
| 12 |
1 10 11 4
|
sspnval |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ∧ ( 𝐴 ( −𝑣 ‘ 𝑊 ) 𝐵 ) ∈ 𝑌 ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝐴 ( −𝑣 ‘ 𝑊 ) 𝐵 ) ) = ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( −𝑣 ‘ 𝑊 ) 𝐵 ) ) ) |
| 13 |
12
|
3expa |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ( −𝑣 ‘ 𝑊 ) 𝐵 ) ∈ 𝑌 ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝐴 ( −𝑣 ‘ 𝑊 ) 𝐵 ) ) = ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( −𝑣 ‘ 𝑊 ) 𝐵 ) ) ) |
| 14 |
9 13
|
syldan |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝐴 ( −𝑣 ‘ 𝑊 ) 𝐵 ) ) = ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( −𝑣 ‘ 𝑊 ) 𝐵 ) ) ) |
| 15 |
|
eqid |
⊢ ( −𝑣 ‘ 𝑈 ) = ( −𝑣 ‘ 𝑈 ) |
| 16 |
1 15 6 4
|
sspmval |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 ( −𝑣 ‘ 𝑊 ) 𝐵 ) = ( 𝐴 ( −𝑣 ‘ 𝑈 ) 𝐵 ) ) |
| 17 |
16
|
fveq2d |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( −𝑣 ‘ 𝑊 ) 𝐵 ) ) = ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( −𝑣 ‘ 𝑈 ) 𝐵 ) ) ) |
| 18 |
14 17
|
eqtrd |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝐴 ( −𝑣 ‘ 𝑊 ) 𝐵 ) ) = ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( −𝑣 ‘ 𝑈 ) 𝐵 ) ) ) |
| 19 |
1 6 11 3
|
imsdval |
⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) → ( 𝐴 𝐶 𝐵 ) = ( ( normCV ‘ 𝑊 ) ‘ ( 𝐴 ( −𝑣 ‘ 𝑊 ) 𝐵 ) ) ) |
| 20 |
19
|
3expb |
⊢ ( ( 𝑊 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 𝐶 𝐵 ) = ( ( normCV ‘ 𝑊 ) ‘ ( 𝐴 ( −𝑣 ‘ 𝑊 ) 𝐵 ) ) ) |
| 21 |
5 20
|
sylan |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 𝐶 𝐵 ) = ( ( normCV ‘ 𝑊 ) ‘ ( 𝐴 ( −𝑣 ‘ 𝑊 ) 𝐵 ) ) ) |
| 22 |
|
eqid |
⊢ ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 ) |
| 23 |
22 1 4
|
sspba |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑌 ⊆ ( BaseSet ‘ 𝑈 ) ) |
| 24 |
23
|
sseld |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝐴 ∈ 𝑌 → 𝐴 ∈ ( BaseSet ‘ 𝑈 ) ) ) |
| 25 |
23
|
sseld |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝐵 ∈ 𝑌 → 𝐵 ∈ ( BaseSet ‘ 𝑈 ) ) ) |
| 26 |
24 25
|
anim12d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) → ( 𝐴 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝐵 ∈ ( BaseSet ‘ 𝑈 ) ) ) ) |
| 27 |
26
|
imp |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝐵 ∈ ( BaseSet ‘ 𝑈 ) ) ) |
| 28 |
22 15 10 2
|
imsdval |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝐵 ∈ ( BaseSet ‘ 𝑈 ) ) → ( 𝐴 𝐷 𝐵 ) = ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( −𝑣 ‘ 𝑈 ) 𝐵 ) ) ) |
| 29 |
28
|
3expb |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝐵 ∈ ( BaseSet ‘ 𝑈 ) ) ) → ( 𝐴 𝐷 𝐵 ) = ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( −𝑣 ‘ 𝑈 ) 𝐵 ) ) ) |
| 30 |
29
|
adantlr |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝐵 ∈ ( BaseSet ‘ 𝑈 ) ) ) → ( 𝐴 𝐷 𝐵 ) = ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( −𝑣 ‘ 𝑈 ) 𝐵 ) ) ) |
| 31 |
27 30
|
syldan |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 𝐷 𝐵 ) = ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( −𝑣 ‘ 𝑈 ) 𝐵 ) ) ) |
| 32 |
18 21 31
|
3eqtr4d |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 𝐶 𝐵 ) = ( 𝐴 𝐷 𝐵 ) ) |