Description: A set of atoms is a subset of the projective map of its LUB. (Contributed by NM, 6-Mar-2012) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sspmaplub.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | |
| sspmaplub.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| sspmaplub.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | ||
| Assertion | sspmaplubN | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ) → 𝑆 ⊆ ( 𝑀 ‘ ( 𝑈 ‘ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspmaplub.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | |
| 2 | sspmaplub.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 3 | sspmaplub.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | |
| 4 | eqid | ⊢ ( ⊥𝑃 ‘ 𝐾 ) = ( ⊥𝑃 ‘ 𝐾 ) | |
| 5 | 2 4 | 2polssN | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ) → 𝑆 ⊆ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ 𝑆 ) ) ) |
| 6 | 1 2 3 4 | 2polvalN | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ) → ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ 𝑆 ) ) = ( 𝑀 ‘ ( 𝑈 ‘ 𝑆 ) ) ) |
| 7 | 5 6 | sseqtrd | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ) → 𝑆 ⊆ ( 𝑀 ‘ ( 𝑈 ‘ 𝑆 ) ) ) |