Step |
Hyp |
Ref |
Expression |
1 |
|
sspmlem.y |
⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) |
2 |
|
sspmlem.h |
⊢ 𝐻 = ( SubSp ‘ 𝑈 ) |
3 |
|
sspmlem.1 |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 𝐹 𝑦 ) = ( 𝑥 𝐺 𝑦 ) ) |
4 |
|
sspmlem.2 |
⊢ ( 𝑊 ∈ NrmCVec → 𝐹 : ( 𝑌 × 𝑌 ) ⟶ 𝑅 ) |
5 |
|
sspmlem.3 |
⊢ ( 𝑈 ∈ NrmCVec → 𝐺 : ( ( BaseSet ‘ 𝑈 ) × ( BaseSet ‘ 𝑈 ) ) ⟶ 𝑆 ) |
6 |
|
ovres |
⊢ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) → ( 𝑥 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑦 ) = ( 𝑥 𝐺 𝑦 ) ) |
7 |
6
|
adantl |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑦 ) = ( 𝑥 𝐺 𝑦 ) ) |
8 |
3 7
|
eqtr4d |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 𝐹 𝑦 ) = ( 𝑥 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑦 ) ) |
9 |
8
|
ralrimivva |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝐹 𝑦 ) = ( 𝑥 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑦 ) ) |
10 |
|
eqid |
⊢ ( 𝑌 × 𝑌 ) = ( 𝑌 × 𝑌 ) |
11 |
9 10
|
jctil |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( ( 𝑌 × 𝑌 ) = ( 𝑌 × 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝐹 𝑦 ) = ( 𝑥 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑦 ) ) ) |
12 |
2
|
sspnv |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑊 ∈ NrmCVec ) |
13 |
|
ffn |
⊢ ( 𝐹 : ( 𝑌 × 𝑌 ) ⟶ 𝑅 → 𝐹 Fn ( 𝑌 × 𝑌 ) ) |
14 |
12 4 13
|
3syl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝐹 Fn ( 𝑌 × 𝑌 ) ) |
15 |
5
|
ffnd |
⊢ ( 𝑈 ∈ NrmCVec → 𝐺 Fn ( ( BaseSet ‘ 𝑈 ) × ( BaseSet ‘ 𝑈 ) ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝐺 Fn ( ( BaseSet ‘ 𝑈 ) × ( BaseSet ‘ 𝑈 ) ) ) |
17 |
|
eqid |
⊢ ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 ) |
18 |
17 1 2
|
sspba |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑌 ⊆ ( BaseSet ‘ 𝑈 ) ) |
19 |
|
xpss12 |
⊢ ( ( 𝑌 ⊆ ( BaseSet ‘ 𝑈 ) ∧ 𝑌 ⊆ ( BaseSet ‘ 𝑈 ) ) → ( 𝑌 × 𝑌 ) ⊆ ( ( BaseSet ‘ 𝑈 ) × ( BaseSet ‘ 𝑈 ) ) ) |
20 |
18 18 19
|
syl2anc |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝑌 × 𝑌 ) ⊆ ( ( BaseSet ‘ 𝑈 ) × ( BaseSet ‘ 𝑈 ) ) ) |
21 |
|
fnssres |
⊢ ( ( 𝐺 Fn ( ( BaseSet ‘ 𝑈 ) × ( BaseSet ‘ 𝑈 ) ) ∧ ( 𝑌 × 𝑌 ) ⊆ ( ( BaseSet ‘ 𝑈 ) × ( BaseSet ‘ 𝑈 ) ) ) → ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) Fn ( 𝑌 × 𝑌 ) ) |
22 |
16 20 21
|
syl2anc |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) Fn ( 𝑌 × 𝑌 ) ) |
23 |
|
eqfnov |
⊢ ( ( 𝐹 Fn ( 𝑌 × 𝑌 ) ∧ ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) Fn ( 𝑌 × 𝑌 ) ) → ( 𝐹 = ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) ↔ ( ( 𝑌 × 𝑌 ) = ( 𝑌 × 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝐹 𝑦 ) = ( 𝑥 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑦 ) ) ) ) |
24 |
14 22 23
|
syl2anc |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝐹 = ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) ↔ ( ( 𝑌 × 𝑌 ) = ( 𝑌 × 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝐹 𝑦 ) = ( 𝑥 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑦 ) ) ) ) |
25 |
11 24
|
mpbird |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝐹 = ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) ) |