Step |
Hyp |
Ref |
Expression |
1 |
|
sspn.y |
⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) |
2 |
|
sspn.n |
⊢ 𝑁 = ( normCV ‘ 𝑈 ) |
3 |
|
sspn.m |
⊢ 𝑀 = ( normCV ‘ 𝑊 ) |
4 |
|
sspn.h |
⊢ 𝐻 = ( SubSp ‘ 𝑈 ) |
5 |
4
|
sspnv |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑊 ∈ NrmCVec ) |
6 |
1 3
|
nvf |
⊢ ( 𝑊 ∈ NrmCVec → 𝑀 : 𝑌 ⟶ ℝ ) |
7 |
5 6
|
syl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑀 : 𝑌 ⟶ ℝ ) |
8 |
7
|
ffnd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑀 Fn 𝑌 ) |
9 |
|
eqid |
⊢ ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 ) |
10 |
9 2
|
nvf |
⊢ ( 𝑈 ∈ NrmCVec → 𝑁 : ( BaseSet ‘ 𝑈 ) ⟶ ℝ ) |
11 |
10
|
ffnd |
⊢ ( 𝑈 ∈ NrmCVec → 𝑁 Fn ( BaseSet ‘ 𝑈 ) ) |
12 |
11
|
adantr |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑁 Fn ( BaseSet ‘ 𝑈 ) ) |
13 |
9 1 4
|
sspba |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑌 ⊆ ( BaseSet ‘ 𝑈 ) ) |
14 |
|
fnssres |
⊢ ( ( 𝑁 Fn ( BaseSet ‘ 𝑈 ) ∧ 𝑌 ⊆ ( BaseSet ‘ 𝑈 ) ) → ( 𝑁 ↾ 𝑌 ) Fn 𝑌 ) |
15 |
12 13 14
|
syl2anc |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝑁 ↾ 𝑌 ) Fn 𝑌 ) |
16 |
10
|
ffund |
⊢ ( 𝑈 ∈ NrmCVec → Fun 𝑁 ) |
17 |
16
|
funresd |
⊢ ( 𝑈 ∈ NrmCVec → Fun ( 𝑁 ↾ 𝑌 ) ) |
18 |
17
|
ad2antrr |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ 𝑌 ) → Fun ( 𝑁 ↾ 𝑌 ) ) |
19 |
|
fnresdm |
⊢ ( 𝑀 Fn 𝑌 → ( 𝑀 ↾ 𝑌 ) = 𝑀 ) |
20 |
8 19
|
syl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝑀 ↾ 𝑌 ) = 𝑀 ) |
21 |
|
eqid |
⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) |
22 |
|
eqid |
⊢ ( +𝑣 ‘ 𝑊 ) = ( +𝑣 ‘ 𝑊 ) |
23 |
|
eqid |
⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) |
24 |
|
eqid |
⊢ ( ·𝑠OLD ‘ 𝑊 ) = ( ·𝑠OLD ‘ 𝑊 ) |
25 |
21 22 23 24 2 3 4
|
isssp |
⊢ ( 𝑈 ∈ NrmCVec → ( 𝑊 ∈ 𝐻 ↔ ( 𝑊 ∈ NrmCVec ∧ ( ( +𝑣 ‘ 𝑊 ) ⊆ ( +𝑣 ‘ 𝑈 ) ∧ ( ·𝑠OLD ‘ 𝑊 ) ⊆ ( ·𝑠OLD ‘ 𝑈 ) ∧ 𝑀 ⊆ 𝑁 ) ) ) ) |
26 |
25
|
simplbda |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( ( +𝑣 ‘ 𝑊 ) ⊆ ( +𝑣 ‘ 𝑈 ) ∧ ( ·𝑠OLD ‘ 𝑊 ) ⊆ ( ·𝑠OLD ‘ 𝑈 ) ∧ 𝑀 ⊆ 𝑁 ) ) |
27 |
26
|
simp3d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑀 ⊆ 𝑁 ) |
28 |
|
ssres |
⊢ ( 𝑀 ⊆ 𝑁 → ( 𝑀 ↾ 𝑌 ) ⊆ ( 𝑁 ↾ 𝑌 ) ) |
29 |
27 28
|
syl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝑀 ↾ 𝑌 ) ⊆ ( 𝑁 ↾ 𝑌 ) ) |
30 |
20 29
|
eqsstrrd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑀 ⊆ ( 𝑁 ↾ 𝑌 ) ) |
31 |
30
|
adantr |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ 𝑌 ) → 𝑀 ⊆ ( 𝑁 ↾ 𝑌 ) ) |
32 |
6
|
fdmd |
⊢ ( 𝑊 ∈ NrmCVec → dom 𝑀 = 𝑌 ) |
33 |
32
|
eleq2d |
⊢ ( 𝑊 ∈ NrmCVec → ( 𝑥 ∈ dom 𝑀 ↔ 𝑥 ∈ 𝑌 ) ) |
34 |
33
|
biimpar |
⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ dom 𝑀 ) |
35 |
5 34
|
sylan |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ dom 𝑀 ) |
36 |
|
funssfv |
⊢ ( ( Fun ( 𝑁 ↾ 𝑌 ) ∧ 𝑀 ⊆ ( 𝑁 ↾ 𝑌 ) ∧ 𝑥 ∈ dom 𝑀 ) → ( ( 𝑁 ↾ 𝑌 ) ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ) |
37 |
18 31 35 36
|
syl3anc |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝑁 ↾ 𝑌 ) ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ) |
38 |
37
|
eqcomd |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ 𝑌 ) → ( 𝑀 ‘ 𝑥 ) = ( ( 𝑁 ↾ 𝑌 ) ‘ 𝑥 ) ) |
39 |
8 15 38
|
eqfnfvd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑀 = ( 𝑁 ↾ 𝑌 ) ) |