Metamath Proof Explorer


Theorem sspnv

Description: A subspace is a normed complex vector space. (Contributed by NM, 27-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypothesis sspnv.h 𝐻 = ( SubSp ‘ 𝑈 )
Assertion sspnv ( ( 𝑈 ∈ NrmCVec ∧ 𝑊𝐻 ) → 𝑊 ∈ NrmCVec )

Proof

Step Hyp Ref Expression
1 sspnv.h 𝐻 = ( SubSp ‘ 𝑈 )
2 eqid ( +𝑣𝑈 ) = ( +𝑣𝑈 )
3 eqid ( +𝑣𝑊 ) = ( +𝑣𝑊 )
4 eqid ( ·𝑠OLD𝑈 ) = ( ·𝑠OLD𝑈 )
5 eqid ( ·𝑠OLD𝑊 ) = ( ·𝑠OLD𝑊 )
6 eqid ( normCV𝑈 ) = ( normCV𝑈 )
7 eqid ( normCV𝑊 ) = ( normCV𝑊 )
8 2 3 4 5 6 7 1 isssp ( 𝑈 ∈ NrmCVec → ( 𝑊𝐻 ↔ ( 𝑊 ∈ NrmCVec ∧ ( ( +𝑣𝑊 ) ⊆ ( +𝑣𝑈 ) ∧ ( ·𝑠OLD𝑊 ) ⊆ ( ·𝑠OLD𝑈 ) ∧ ( normCV𝑊 ) ⊆ ( normCV𝑈 ) ) ) ) )
9 8 simprbda ( ( 𝑈 ∈ NrmCVec ∧ 𝑊𝐻 ) → 𝑊 ∈ NrmCVec )