Metamath Proof Explorer


Theorem sspnval

Description: The norm on a subspace in terms of the norm on the parent space. (Contributed by NM, 28-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses sspn.y 𝑌 = ( BaseSet ‘ 𝑊 )
sspn.n 𝑁 = ( normCV𝑈 )
sspn.m 𝑀 = ( normCV𝑊 )
sspn.h 𝐻 = ( SubSp ‘ 𝑈 )
Assertion sspnval ( ( 𝑈 ∈ NrmCVec ∧ 𝑊𝐻𝐴𝑌 ) → ( 𝑀𝐴 ) = ( 𝑁𝐴 ) )

Proof

Step Hyp Ref Expression
1 sspn.y 𝑌 = ( BaseSet ‘ 𝑊 )
2 sspn.n 𝑁 = ( normCV𝑈 )
3 sspn.m 𝑀 = ( normCV𝑊 )
4 sspn.h 𝐻 = ( SubSp ‘ 𝑈 )
5 1 2 3 4 sspn ( ( 𝑈 ∈ NrmCVec ∧ 𝑊𝐻 ) → 𝑀 = ( 𝑁𝑌 ) )
6 5 fveq1d ( ( 𝑈 ∈ NrmCVec ∧ 𝑊𝐻 ) → ( 𝑀𝐴 ) = ( ( 𝑁𝑌 ) ‘ 𝐴 ) )
7 fvres ( 𝐴𝑌 → ( ( 𝑁𝑌 ) ‘ 𝐴 ) = ( 𝑁𝐴 ) )
8 6 7 sylan9eq ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊𝐻 ) ∧ 𝐴𝑌 ) → ( 𝑀𝐴 ) = ( 𝑁𝐴 ) )
9 8 3impa ( ( 𝑈 ∈ NrmCVec ∧ 𝑊𝐻𝐴𝑌 ) → ( 𝑀𝐴 ) = ( 𝑁𝐴 ) )