Description: The norm on a subspace in terms of the norm on the parent space. (Contributed by NM, 28-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sspn.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| sspn.n | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| sspn.m | ⊢ 𝑀 = ( normCV ‘ 𝑊 ) | ||
| sspn.h | ⊢ 𝐻 = ( SubSp ‘ 𝑈 ) | ||
| Assertion | sspnval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ∧ 𝐴 ∈ 𝑌 ) → ( 𝑀 ‘ 𝐴 ) = ( 𝑁 ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspn.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 2 | sspn.n | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 3 | sspn.m | ⊢ 𝑀 = ( normCV ‘ 𝑊 ) | |
| 4 | sspn.h | ⊢ 𝐻 = ( SubSp ‘ 𝑈 ) | |
| 5 | 1 2 3 4 | sspn | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑀 = ( 𝑁 ↾ 𝑌 ) ) |
| 6 | 5 | fveq1d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝑀 ‘ 𝐴 ) = ( ( 𝑁 ↾ 𝑌 ) ‘ 𝐴 ) ) |
| 7 | fvres | ⊢ ( 𝐴 ∈ 𝑌 → ( ( 𝑁 ↾ 𝑌 ) ‘ 𝐴 ) = ( 𝑁 ‘ 𝐴 ) ) | |
| 8 | 6 7 | sylan9eq | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐴 ∈ 𝑌 ) → ( 𝑀 ‘ 𝐴 ) = ( 𝑁 ‘ 𝐴 ) ) |
| 9 | 8 | 3impa | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ∧ 𝐴 ∈ 𝑌 ) → ( 𝑀 ‘ 𝐴 ) = ( 𝑁 ‘ 𝐴 ) ) |