| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uncom |
⊢ ( ∅ ∪ { 𝐵 , 𝐶 } ) = ( { 𝐵 , 𝐶 } ∪ ∅ ) |
| 2 |
|
un0 |
⊢ ( { 𝐵 , 𝐶 } ∪ ∅ ) = { 𝐵 , 𝐶 } |
| 3 |
1 2
|
eqtri |
⊢ ( ∅ ∪ { 𝐵 , 𝐶 } ) = { 𝐵 , 𝐶 } |
| 4 |
3
|
sseq2i |
⊢ ( 𝐴 ⊆ ( ∅ ∪ { 𝐵 , 𝐶 } ) ↔ 𝐴 ⊆ { 𝐵 , 𝐶 } ) |
| 5 |
|
0ss |
⊢ ∅ ⊆ 𝐴 |
| 6 |
5
|
biantrur |
⊢ ( 𝐴 ⊆ ( ∅ ∪ { 𝐵 , 𝐶 } ) ↔ ( ∅ ⊆ 𝐴 ∧ 𝐴 ⊆ ( ∅ ∪ { 𝐵 , 𝐶 } ) ) ) |
| 7 |
4 6
|
bitr3i |
⊢ ( 𝐴 ⊆ { 𝐵 , 𝐶 } ↔ ( ∅ ⊆ 𝐴 ∧ 𝐴 ⊆ ( ∅ ∪ { 𝐵 , 𝐶 } ) ) ) |
| 8 |
|
ssunpr |
⊢ ( ( ∅ ⊆ 𝐴 ∧ 𝐴 ⊆ ( ∅ ∪ { 𝐵 , 𝐶 } ) ) ↔ ( ( 𝐴 = ∅ ∨ 𝐴 = ( ∅ ∪ { 𝐵 } ) ) ∨ ( 𝐴 = ( ∅ ∪ { 𝐶 } ) ∨ 𝐴 = ( ∅ ∪ { 𝐵 , 𝐶 } ) ) ) ) |
| 9 |
|
uncom |
⊢ ( ∅ ∪ { 𝐵 } ) = ( { 𝐵 } ∪ ∅ ) |
| 10 |
|
un0 |
⊢ ( { 𝐵 } ∪ ∅ ) = { 𝐵 } |
| 11 |
9 10
|
eqtri |
⊢ ( ∅ ∪ { 𝐵 } ) = { 𝐵 } |
| 12 |
11
|
eqeq2i |
⊢ ( 𝐴 = ( ∅ ∪ { 𝐵 } ) ↔ 𝐴 = { 𝐵 } ) |
| 13 |
12
|
orbi2i |
⊢ ( ( 𝐴 = ∅ ∨ 𝐴 = ( ∅ ∪ { 𝐵 } ) ) ↔ ( 𝐴 = ∅ ∨ 𝐴 = { 𝐵 } ) ) |
| 14 |
|
uncom |
⊢ ( ∅ ∪ { 𝐶 } ) = ( { 𝐶 } ∪ ∅ ) |
| 15 |
|
un0 |
⊢ ( { 𝐶 } ∪ ∅ ) = { 𝐶 } |
| 16 |
14 15
|
eqtri |
⊢ ( ∅ ∪ { 𝐶 } ) = { 𝐶 } |
| 17 |
16
|
eqeq2i |
⊢ ( 𝐴 = ( ∅ ∪ { 𝐶 } ) ↔ 𝐴 = { 𝐶 } ) |
| 18 |
3
|
eqeq2i |
⊢ ( 𝐴 = ( ∅ ∪ { 𝐵 , 𝐶 } ) ↔ 𝐴 = { 𝐵 , 𝐶 } ) |
| 19 |
17 18
|
orbi12i |
⊢ ( ( 𝐴 = ( ∅ ∪ { 𝐶 } ) ∨ 𝐴 = ( ∅ ∪ { 𝐵 , 𝐶 } ) ) ↔ ( 𝐴 = { 𝐶 } ∨ 𝐴 = { 𝐵 , 𝐶 } ) ) |
| 20 |
13 19
|
orbi12i |
⊢ ( ( ( 𝐴 = ∅ ∨ 𝐴 = ( ∅ ∪ { 𝐵 } ) ) ∨ ( 𝐴 = ( ∅ ∪ { 𝐶 } ) ∨ 𝐴 = ( ∅ ∪ { 𝐵 , 𝐶 } ) ) ) ↔ ( ( 𝐴 = ∅ ∨ 𝐴 = { 𝐵 } ) ∨ ( 𝐴 = { 𝐶 } ∨ 𝐴 = { 𝐵 , 𝐶 } ) ) ) |
| 21 |
7 8 20
|
3bitri |
⊢ ( 𝐴 ⊆ { 𝐵 , 𝐶 } ↔ ( ( 𝐴 = ∅ ∨ 𝐴 = { 𝐵 } ) ∨ ( 𝐴 = { 𝐶 } ∨ 𝐴 = { 𝐵 , 𝐶 } ) ) ) |