Step |
Hyp |
Ref |
Expression |
1 |
|
uncom |
⊢ ( ∅ ∪ { 𝐵 , 𝐶 } ) = ( { 𝐵 , 𝐶 } ∪ ∅ ) |
2 |
|
un0 |
⊢ ( { 𝐵 , 𝐶 } ∪ ∅ ) = { 𝐵 , 𝐶 } |
3 |
1 2
|
eqtri |
⊢ ( ∅ ∪ { 𝐵 , 𝐶 } ) = { 𝐵 , 𝐶 } |
4 |
3
|
sseq2i |
⊢ ( 𝐴 ⊆ ( ∅ ∪ { 𝐵 , 𝐶 } ) ↔ 𝐴 ⊆ { 𝐵 , 𝐶 } ) |
5 |
|
0ss |
⊢ ∅ ⊆ 𝐴 |
6 |
5
|
biantrur |
⊢ ( 𝐴 ⊆ ( ∅ ∪ { 𝐵 , 𝐶 } ) ↔ ( ∅ ⊆ 𝐴 ∧ 𝐴 ⊆ ( ∅ ∪ { 𝐵 , 𝐶 } ) ) ) |
7 |
4 6
|
bitr3i |
⊢ ( 𝐴 ⊆ { 𝐵 , 𝐶 } ↔ ( ∅ ⊆ 𝐴 ∧ 𝐴 ⊆ ( ∅ ∪ { 𝐵 , 𝐶 } ) ) ) |
8 |
|
ssunpr |
⊢ ( ( ∅ ⊆ 𝐴 ∧ 𝐴 ⊆ ( ∅ ∪ { 𝐵 , 𝐶 } ) ) ↔ ( ( 𝐴 = ∅ ∨ 𝐴 = ( ∅ ∪ { 𝐵 } ) ) ∨ ( 𝐴 = ( ∅ ∪ { 𝐶 } ) ∨ 𝐴 = ( ∅ ∪ { 𝐵 , 𝐶 } ) ) ) ) |
9 |
|
uncom |
⊢ ( ∅ ∪ { 𝐵 } ) = ( { 𝐵 } ∪ ∅ ) |
10 |
|
un0 |
⊢ ( { 𝐵 } ∪ ∅ ) = { 𝐵 } |
11 |
9 10
|
eqtri |
⊢ ( ∅ ∪ { 𝐵 } ) = { 𝐵 } |
12 |
11
|
eqeq2i |
⊢ ( 𝐴 = ( ∅ ∪ { 𝐵 } ) ↔ 𝐴 = { 𝐵 } ) |
13 |
12
|
orbi2i |
⊢ ( ( 𝐴 = ∅ ∨ 𝐴 = ( ∅ ∪ { 𝐵 } ) ) ↔ ( 𝐴 = ∅ ∨ 𝐴 = { 𝐵 } ) ) |
14 |
|
uncom |
⊢ ( ∅ ∪ { 𝐶 } ) = ( { 𝐶 } ∪ ∅ ) |
15 |
|
un0 |
⊢ ( { 𝐶 } ∪ ∅ ) = { 𝐶 } |
16 |
14 15
|
eqtri |
⊢ ( ∅ ∪ { 𝐶 } ) = { 𝐶 } |
17 |
16
|
eqeq2i |
⊢ ( 𝐴 = ( ∅ ∪ { 𝐶 } ) ↔ 𝐴 = { 𝐶 } ) |
18 |
3
|
eqeq2i |
⊢ ( 𝐴 = ( ∅ ∪ { 𝐵 , 𝐶 } ) ↔ 𝐴 = { 𝐵 , 𝐶 } ) |
19 |
17 18
|
orbi12i |
⊢ ( ( 𝐴 = ( ∅ ∪ { 𝐶 } ) ∨ 𝐴 = ( ∅ ∪ { 𝐵 , 𝐶 } ) ) ↔ ( 𝐴 = { 𝐶 } ∨ 𝐴 = { 𝐵 , 𝐶 } ) ) |
20 |
13 19
|
orbi12i |
⊢ ( ( ( 𝐴 = ∅ ∨ 𝐴 = ( ∅ ∪ { 𝐵 } ) ) ∨ ( 𝐴 = ( ∅ ∪ { 𝐶 } ) ∨ 𝐴 = ( ∅ ∪ { 𝐵 , 𝐶 } ) ) ) ↔ ( ( 𝐴 = ∅ ∨ 𝐴 = { 𝐵 } ) ∨ ( 𝐴 = { 𝐶 } ∨ 𝐴 = { 𝐵 , 𝐶 } ) ) ) |
21 |
7 8 20
|
3bitri |
⊢ ( 𝐴 ⊆ { 𝐵 , 𝐶 } ↔ ( ( 𝐴 = ∅ ∨ 𝐴 = { 𝐵 } ) ∨ ( 𝐴 = { 𝐶 } ∨ 𝐴 = { 𝐵 , 𝐶 } ) ) ) |