Step |
Hyp |
Ref |
Expression |
1 |
|
sseqin2 |
⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐴 ∩ 𝐵 ) = 𝐵 ) |
2 |
|
df-pred |
⊢ Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) |
3 |
2
|
sseq1i |
⊢ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ↔ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ⊆ 𝐵 ) |
4 |
|
df-ss |
⊢ ( ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ⊆ 𝐵 ↔ ( ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ∩ 𝐵 ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ) |
5 |
|
in32 |
⊢ ( ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ∩ 𝐵 ) = ( ( 𝐴 ∩ 𝐵 ) ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) |
6 |
5
|
eqeq1i |
⊢ ( ( ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ∩ 𝐵 ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ↔ ( ( 𝐴 ∩ 𝐵 ) ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ) |
7 |
3 4 6
|
3bitri |
⊢ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ↔ ( ( 𝐴 ∩ 𝐵 ) ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ) |
8 |
|
ineq1 |
⊢ ( ( 𝐴 ∩ 𝐵 ) = 𝐵 → ( ( 𝐴 ∩ 𝐵 ) ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) = ( 𝐵 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ) |
9 |
8
|
eqeq1d |
⊢ ( ( 𝐴 ∩ 𝐵 ) = 𝐵 → ( ( ( 𝐴 ∩ 𝐵 ) ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ↔ ( 𝐵 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ) ) |
10 |
9
|
biimpa |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) = 𝐵 ∧ ( ( 𝐴 ∩ 𝐵 ) ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ) → ( 𝐵 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ) |
11 |
|
df-pred |
⊢ Pred ( 𝑅 , 𝐵 , 𝑋 ) = ( 𝐵 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) |
12 |
10 11 2
|
3eqtr4g |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) = 𝐵 ∧ ( ( 𝐴 ∩ 𝐵 ) ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ) → Pred ( 𝑅 , 𝐵 , 𝑋 ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
13 |
12
|
eqcomd |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) = 𝐵 ∧ ( ( 𝐴 ∩ 𝐵 ) ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑅 , 𝐵 , 𝑋 ) ) |
14 |
1 7 13
|
syl2anb |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐵 ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) = Pred ( 𝑅 , 𝐵 , 𝑋 ) ) |