Metamath Proof Explorer


Theorem sspreima

Description: The preimage of a subset is a subset of the preimage. (Contributed by Brendan Leahy, 23-Sep-2017)

Ref Expression
Assertion sspreima ( ( Fun 𝐹𝐴𝐵 ) → ( 𝐹𝐴 ) ⊆ ( 𝐹𝐵 ) )

Proof

Step Hyp Ref Expression
1 inpreima ( Fun 𝐹 → ( 𝐹 “ ( 𝐴𝐵 ) ) = ( ( 𝐹𝐴 ) ∩ ( 𝐹𝐵 ) ) )
2 df-ss ( 𝐴𝐵 ↔ ( 𝐴𝐵 ) = 𝐴 )
3 2 biimpi ( 𝐴𝐵 → ( 𝐴𝐵 ) = 𝐴 )
4 3 imaeq2d ( 𝐴𝐵 → ( 𝐹 “ ( 𝐴𝐵 ) ) = ( 𝐹𝐴 ) )
5 1 4 sylan9req ( ( Fun 𝐹𝐴𝐵 ) → ( ( 𝐹𝐴 ) ∩ ( 𝐹𝐵 ) ) = ( 𝐹𝐴 ) )
6 df-ss ( ( 𝐹𝐴 ) ⊆ ( 𝐹𝐵 ) ↔ ( ( 𝐹𝐴 ) ∩ ( 𝐹𝐵 ) ) = ( 𝐹𝐴 ) )
7 5 6 sylibr ( ( Fun 𝐹𝐴𝐵 ) → ( 𝐹𝐴 ) ⊆ ( 𝐹𝐵 ) )