Description: A pair as subset of a pair. (Contributed by AV, 26-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | ssprss | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( { 𝐴 , 𝐵 } ⊆ { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prssg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐴 ∈ { 𝐶 , 𝐷 } ∧ 𝐵 ∈ { 𝐶 , 𝐷 } ) ↔ { 𝐴 , 𝐵 } ⊆ { 𝐶 , 𝐷 } ) ) | |
2 | elprg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ { 𝐶 , 𝐷 } ↔ ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ) ) | |
3 | elprg | ⊢ ( 𝐵 ∈ 𝑊 → ( 𝐵 ∈ { 𝐶 , 𝐷 } ↔ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) ) | |
4 | 2 3 | bi2anan9 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝐴 ∈ { 𝐶 , 𝐷 } ∧ 𝐵 ∈ { 𝐶 , 𝐷 } ) ↔ ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) ) ) |
5 | 1 4 | bitr3d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( { 𝐴 , 𝐵 } ⊆ { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) ) ) |