Metamath Proof Explorer


Theorem ssprss

Description: A pair as subset of a pair. (Contributed by AV, 26-Oct-2020)

Ref Expression
Assertion ssprss ( ( 𝐴𝑉𝐵𝑊 ) → ( { 𝐴 , 𝐵 } ⊆ { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶𝐵 = 𝐷 ) ) ) )

Proof

Step Hyp Ref Expression
1 prssg ( ( 𝐴𝑉𝐵𝑊 ) → ( ( 𝐴 ∈ { 𝐶 , 𝐷 } ∧ 𝐵 ∈ { 𝐶 , 𝐷 } ) ↔ { 𝐴 , 𝐵 } ⊆ { 𝐶 , 𝐷 } ) )
2 elprg ( 𝐴𝑉 → ( 𝐴 ∈ { 𝐶 , 𝐷 } ↔ ( 𝐴 = 𝐶𝐴 = 𝐷 ) ) )
3 elprg ( 𝐵𝑊 → ( 𝐵 ∈ { 𝐶 , 𝐷 } ↔ ( 𝐵 = 𝐶𝐵 = 𝐷 ) ) )
4 2 3 bi2anan9 ( ( 𝐴𝑉𝐵𝑊 ) → ( ( 𝐴 ∈ { 𝐶 , 𝐷 } ∧ 𝐵 ∈ { 𝐶 , 𝐷 } ) ↔ ( ( 𝐴 = 𝐶𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶𝐵 = 𝐷 ) ) ) )
5 1 4 bitr3d ( ( 𝐴𝑉𝐵𝑊 ) → ( { 𝐴 , 𝐵 } ⊆ { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶𝐵 = 𝐷 ) ) ) )