Step |
Hyp |
Ref |
Expression |
1 |
|
ssprss |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( { 𝐴 , 𝐵 } ⊆ { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) ) ) |
2 |
1
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐴 , 𝐵 } ⊆ { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) ) ) |
3 |
|
eqneqall |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ≠ 𝐵 → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
4 |
|
eqtr3 |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) → 𝐴 = 𝐵 ) |
5 |
3 4
|
syl11 |
⊢ ( 𝐴 ≠ 𝐵 → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
6 |
5
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
7 |
6
|
com12 |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐶 ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
8 |
|
preq12 |
⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → { 𝐴 , 𝐵 } = { 𝐷 , 𝐶 } ) |
9 |
|
prcom |
⊢ { 𝐷 , 𝐶 } = { 𝐶 , 𝐷 } |
10 |
8 9
|
eqtrdi |
⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) |
11 |
10
|
a1d |
⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
12 |
|
preq12 |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) |
13 |
12
|
a1d |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
14 |
|
eqtr3 |
⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐷 ) → 𝐴 = 𝐵 ) |
15 |
3 14
|
syl11 |
⊢ ( 𝐴 ≠ 𝐵 → ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐷 ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
16 |
15
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐷 ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
17 |
16
|
com12 |
⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐷 ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
18 |
7 11 13 17
|
ccase |
⊢ ( ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
19 |
18
|
com12 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ∧ ( 𝐵 = 𝐶 ∨ 𝐵 = 𝐷 ) ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
20 |
2 19
|
sylbid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐴 , 𝐵 } ⊆ { 𝐶 , 𝐷 } → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
21 |
|
eqimss |
⊢ ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } → { 𝐴 , 𝐵 } ⊆ { 𝐶 , 𝐷 } ) |
22 |
20 21
|
impbid1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐴 , 𝐵 } ⊆ { 𝐶 , 𝐷 } ↔ { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |