| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssps.y |
⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) |
| 2 |
|
ssps.s |
⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) |
| 3 |
|
ssps.r |
⊢ 𝑅 = ( ·𝑠OLD ‘ 𝑊 ) |
| 4 |
|
ssps.h |
⊢ 𝐻 = ( SubSp ‘ 𝑈 ) |
| 5 |
|
eqid |
⊢ ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 ) |
| 6 |
5 2
|
nvsf |
⊢ ( 𝑈 ∈ NrmCVec → 𝑆 : ( ℂ × ( BaseSet ‘ 𝑈 ) ) ⟶ ( BaseSet ‘ 𝑈 ) ) |
| 7 |
6
|
ffund |
⊢ ( 𝑈 ∈ NrmCVec → Fun 𝑆 ) |
| 8 |
7
|
funresd |
⊢ ( 𝑈 ∈ NrmCVec → Fun ( 𝑆 ↾ ( ℂ × 𝑌 ) ) ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → Fun ( 𝑆 ↾ ( ℂ × 𝑌 ) ) ) |
| 10 |
4
|
sspnv |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑊 ∈ NrmCVec ) |
| 11 |
1 3
|
nvsf |
⊢ ( 𝑊 ∈ NrmCVec → 𝑅 : ( ℂ × 𝑌 ) ⟶ 𝑌 ) |
| 12 |
10 11
|
syl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑅 : ( ℂ × 𝑌 ) ⟶ 𝑌 ) |
| 13 |
12
|
ffnd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑅 Fn ( ℂ × 𝑌 ) ) |
| 14 |
|
fnresdm |
⊢ ( 𝑅 Fn ( ℂ × 𝑌 ) → ( 𝑅 ↾ ( ℂ × 𝑌 ) ) = 𝑅 ) |
| 15 |
13 14
|
syl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝑅 ↾ ( ℂ × 𝑌 ) ) = 𝑅 ) |
| 16 |
|
eqid |
⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) |
| 17 |
|
eqid |
⊢ ( +𝑣 ‘ 𝑊 ) = ( +𝑣 ‘ 𝑊 ) |
| 18 |
|
eqid |
⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) |
| 19 |
|
eqid |
⊢ ( normCV ‘ 𝑊 ) = ( normCV ‘ 𝑊 ) |
| 20 |
16 17 2 3 18 19 4
|
isssp |
⊢ ( 𝑈 ∈ NrmCVec → ( 𝑊 ∈ 𝐻 ↔ ( 𝑊 ∈ NrmCVec ∧ ( ( +𝑣 ‘ 𝑊 ) ⊆ ( +𝑣 ‘ 𝑈 ) ∧ 𝑅 ⊆ 𝑆 ∧ ( normCV ‘ 𝑊 ) ⊆ ( normCV ‘ 𝑈 ) ) ) ) ) |
| 21 |
20
|
simplbda |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( ( +𝑣 ‘ 𝑊 ) ⊆ ( +𝑣 ‘ 𝑈 ) ∧ 𝑅 ⊆ 𝑆 ∧ ( normCV ‘ 𝑊 ) ⊆ ( normCV ‘ 𝑈 ) ) ) |
| 22 |
21
|
simp2d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑅 ⊆ 𝑆 ) |
| 23 |
|
ssres |
⊢ ( 𝑅 ⊆ 𝑆 → ( 𝑅 ↾ ( ℂ × 𝑌 ) ) ⊆ ( 𝑆 ↾ ( ℂ × 𝑌 ) ) ) |
| 24 |
22 23
|
syl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝑅 ↾ ( ℂ × 𝑌 ) ) ⊆ ( 𝑆 ↾ ( ℂ × 𝑌 ) ) ) |
| 25 |
15 24
|
eqsstrrd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑅 ⊆ ( 𝑆 ↾ ( ℂ × 𝑌 ) ) ) |
| 26 |
9 13 25
|
3jca |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( Fun ( 𝑆 ↾ ( ℂ × 𝑌 ) ) ∧ 𝑅 Fn ( ℂ × 𝑌 ) ∧ 𝑅 ⊆ ( 𝑆 ↾ ( ℂ × 𝑌 ) ) ) ) |
| 27 |
|
oprssov |
⊢ ( ( ( Fun ( 𝑆 ↾ ( ℂ × 𝑌 ) ) ∧ 𝑅 Fn ( ℂ × 𝑌 ) ∧ 𝑅 ⊆ ( 𝑆 ↾ ( ℂ × 𝑌 ) ) ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 ( 𝑆 ↾ ( ℂ × 𝑌 ) ) 𝑦 ) = ( 𝑥 𝑅 𝑦 ) ) |
| 28 |
26 27
|
sylan |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 ( 𝑆 ↾ ( ℂ × 𝑌 ) ) 𝑦 ) = ( 𝑥 𝑅 𝑦 ) ) |
| 29 |
28
|
eqcomd |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 𝑅 𝑦 ) = ( 𝑥 ( 𝑆 ↾ ( ℂ × 𝑌 ) ) 𝑦 ) ) |
| 30 |
29
|
ralrimivva |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝑅 𝑦 ) = ( 𝑥 ( 𝑆 ↾ ( ℂ × 𝑌 ) ) 𝑦 ) ) |
| 31 |
|
eqid |
⊢ ( ℂ × 𝑌 ) = ( ℂ × 𝑌 ) |
| 32 |
30 31
|
jctil |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( ( ℂ × 𝑌 ) = ( ℂ × 𝑌 ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝑅 𝑦 ) = ( 𝑥 ( 𝑆 ↾ ( ℂ × 𝑌 ) ) 𝑦 ) ) ) |
| 33 |
6
|
ffnd |
⊢ ( 𝑈 ∈ NrmCVec → 𝑆 Fn ( ℂ × ( BaseSet ‘ 𝑈 ) ) ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑆 Fn ( ℂ × ( BaseSet ‘ 𝑈 ) ) ) |
| 35 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 36 |
5 1 4
|
sspba |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑌 ⊆ ( BaseSet ‘ 𝑈 ) ) |
| 37 |
|
xpss12 |
⊢ ( ( ℂ ⊆ ℂ ∧ 𝑌 ⊆ ( BaseSet ‘ 𝑈 ) ) → ( ℂ × 𝑌 ) ⊆ ( ℂ × ( BaseSet ‘ 𝑈 ) ) ) |
| 38 |
35 36 37
|
sylancr |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( ℂ × 𝑌 ) ⊆ ( ℂ × ( BaseSet ‘ 𝑈 ) ) ) |
| 39 |
|
fnssres |
⊢ ( ( 𝑆 Fn ( ℂ × ( BaseSet ‘ 𝑈 ) ) ∧ ( ℂ × 𝑌 ) ⊆ ( ℂ × ( BaseSet ‘ 𝑈 ) ) ) → ( 𝑆 ↾ ( ℂ × 𝑌 ) ) Fn ( ℂ × 𝑌 ) ) |
| 40 |
34 38 39
|
syl2anc |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝑆 ↾ ( ℂ × 𝑌 ) ) Fn ( ℂ × 𝑌 ) ) |
| 41 |
|
eqfnov |
⊢ ( ( 𝑅 Fn ( ℂ × 𝑌 ) ∧ ( 𝑆 ↾ ( ℂ × 𝑌 ) ) Fn ( ℂ × 𝑌 ) ) → ( 𝑅 = ( 𝑆 ↾ ( ℂ × 𝑌 ) ) ↔ ( ( ℂ × 𝑌 ) = ( ℂ × 𝑌 ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝑅 𝑦 ) = ( 𝑥 ( 𝑆 ↾ ( ℂ × 𝑌 ) ) 𝑦 ) ) ) ) |
| 42 |
13 40 41
|
syl2anc |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝑅 = ( 𝑆 ↾ ( ℂ × 𝑌 ) ) ↔ ( ( ℂ × 𝑌 ) = ( ℂ × 𝑌 ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝑅 𝑦 ) = ( 𝑥 ( 𝑆 ↾ ( ℂ × 𝑌 ) ) 𝑦 ) ) ) ) |
| 43 |
32 42
|
mpbird |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑅 = ( 𝑆 ↾ ( ℂ × 𝑌 ) ) ) |