| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ssps.y | 
							⊢ 𝑌  =  ( BaseSet ‘ 𝑊 )  | 
						
						
							| 2 | 
							
								
							 | 
							ssps.s | 
							⊢ 𝑆  =  (  ·𝑠OLD  ‘ 𝑈 )  | 
						
						
							| 3 | 
							
								
							 | 
							ssps.r | 
							⊢ 𝑅  =  (  ·𝑠OLD  ‘ 𝑊 )  | 
						
						
							| 4 | 
							
								
							 | 
							ssps.h | 
							⊢ 𝐻  =  ( SubSp ‘ 𝑈 )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							⊢ ( BaseSet ‘ 𝑈 )  =  ( BaseSet ‘ 𝑈 )  | 
						
						
							| 6 | 
							
								5 2
							 | 
							nvsf | 
							⊢ ( 𝑈  ∈  NrmCVec  →  𝑆 : ( ℂ  ×  ( BaseSet ‘ 𝑈 ) ) ⟶ ( BaseSet ‘ 𝑈 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							ffund | 
							⊢ ( 𝑈  ∈  NrmCVec  →  Fun  𝑆 )  | 
						
						
							| 8 | 
							
								7
							 | 
							funresd | 
							⊢ ( 𝑈  ∈  NrmCVec  →  Fun  ( 𝑆  ↾  ( ℂ  ×  𝑌 ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							adantr | 
							⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  𝐻 )  →  Fun  ( 𝑆  ↾  ( ℂ  ×  𝑌 ) ) )  | 
						
						
							| 10 | 
							
								4
							 | 
							sspnv | 
							⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  𝐻 )  →  𝑊  ∈  NrmCVec )  | 
						
						
							| 11 | 
							
								1 3
							 | 
							nvsf | 
							⊢ ( 𝑊  ∈  NrmCVec  →  𝑅 : ( ℂ  ×  𝑌 ) ⟶ 𝑌 )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							syl | 
							⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  𝐻 )  →  𝑅 : ( ℂ  ×  𝑌 ) ⟶ 𝑌 )  | 
						
						
							| 13 | 
							
								12
							 | 
							ffnd | 
							⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  𝐻 )  →  𝑅  Fn  ( ℂ  ×  𝑌 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							fnresdm | 
							⊢ ( 𝑅  Fn  ( ℂ  ×  𝑌 )  →  ( 𝑅  ↾  ( ℂ  ×  𝑌 ) )  =  𝑅 )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							syl | 
							⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  𝐻 )  →  ( 𝑅  ↾  ( ℂ  ×  𝑌 ) )  =  𝑅 )  | 
						
						
							| 16 | 
							
								
							 | 
							eqid | 
							⊢ (  +𝑣  ‘ 𝑈 )  =  (  +𝑣  ‘ 𝑈 )  | 
						
						
							| 17 | 
							
								
							 | 
							eqid | 
							⊢ (  +𝑣  ‘ 𝑊 )  =  (  +𝑣  ‘ 𝑊 )  | 
						
						
							| 18 | 
							
								
							 | 
							eqid | 
							⊢ ( normCV ‘ 𝑈 )  =  ( normCV ‘ 𝑈 )  | 
						
						
							| 19 | 
							
								
							 | 
							eqid | 
							⊢ ( normCV ‘ 𝑊 )  =  ( normCV ‘ 𝑊 )  | 
						
						
							| 20 | 
							
								16 17 2 3 18 19 4
							 | 
							isssp | 
							⊢ ( 𝑈  ∈  NrmCVec  →  ( 𝑊  ∈  𝐻  ↔  ( 𝑊  ∈  NrmCVec  ∧  ( (  +𝑣  ‘ 𝑊 )  ⊆  (  +𝑣  ‘ 𝑈 )  ∧  𝑅  ⊆  𝑆  ∧  ( normCV ‘ 𝑊 )  ⊆  ( normCV ‘ 𝑈 ) ) ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							simplbda | 
							⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  𝐻 )  →  ( (  +𝑣  ‘ 𝑊 )  ⊆  (  +𝑣  ‘ 𝑈 )  ∧  𝑅  ⊆  𝑆  ∧  ( normCV ‘ 𝑊 )  ⊆  ( normCV ‘ 𝑈 ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							simp2d | 
							⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  𝐻 )  →  𝑅  ⊆  𝑆 )  | 
						
						
							| 23 | 
							
								
							 | 
							ssres | 
							⊢ ( 𝑅  ⊆  𝑆  →  ( 𝑅  ↾  ( ℂ  ×  𝑌 ) )  ⊆  ( 𝑆  ↾  ( ℂ  ×  𝑌 ) ) )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							syl | 
							⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  𝐻 )  →  ( 𝑅  ↾  ( ℂ  ×  𝑌 ) )  ⊆  ( 𝑆  ↾  ( ℂ  ×  𝑌 ) ) )  | 
						
						
							| 25 | 
							
								15 24
							 | 
							eqsstrrd | 
							⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  𝐻 )  →  𝑅  ⊆  ( 𝑆  ↾  ( ℂ  ×  𝑌 ) ) )  | 
						
						
							| 26 | 
							
								9 13 25
							 | 
							3jca | 
							⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  𝐻 )  →  ( Fun  ( 𝑆  ↾  ( ℂ  ×  𝑌 ) )  ∧  𝑅  Fn  ( ℂ  ×  𝑌 )  ∧  𝑅  ⊆  ( 𝑆  ↾  ( ℂ  ×  𝑌 ) ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							oprssov | 
							⊢ ( ( ( Fun  ( 𝑆  ↾  ( ℂ  ×  𝑌 ) )  ∧  𝑅  Fn  ( ℂ  ×  𝑌 )  ∧  𝑅  ⊆  ( 𝑆  ↾  ( ℂ  ×  𝑌 ) ) )  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  𝑌 ) )  →  ( 𝑥 ( 𝑆  ↾  ( ℂ  ×  𝑌 ) ) 𝑦 )  =  ( 𝑥 𝑅 𝑦 ) )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							sylan | 
							⊢ ( ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  𝑌 ) )  →  ( 𝑥 ( 𝑆  ↾  ( ℂ  ×  𝑌 ) ) 𝑦 )  =  ( 𝑥 𝑅 𝑦 ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							eqcomd | 
							⊢ ( ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  𝑌 ) )  →  ( 𝑥 𝑅 𝑦 )  =  ( 𝑥 ( 𝑆  ↾  ( ℂ  ×  𝑌 ) ) 𝑦 ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							ralrimivva | 
							⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  𝐻 )  →  ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈  𝑌 ( 𝑥 𝑅 𝑦 )  =  ( 𝑥 ( 𝑆  ↾  ( ℂ  ×  𝑌 ) ) 𝑦 ) )  | 
						
						
							| 31 | 
							
								
							 | 
							eqid | 
							⊢ ( ℂ  ×  𝑌 )  =  ( ℂ  ×  𝑌 )  | 
						
						
							| 32 | 
							
								30 31
							 | 
							jctil | 
							⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  𝐻 )  →  ( ( ℂ  ×  𝑌 )  =  ( ℂ  ×  𝑌 )  ∧  ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈  𝑌 ( 𝑥 𝑅 𝑦 )  =  ( 𝑥 ( 𝑆  ↾  ( ℂ  ×  𝑌 ) ) 𝑦 ) ) )  | 
						
						
							| 33 | 
							
								6
							 | 
							ffnd | 
							⊢ ( 𝑈  ∈  NrmCVec  →  𝑆  Fn  ( ℂ  ×  ( BaseSet ‘ 𝑈 ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							adantr | 
							⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  𝐻 )  →  𝑆  Fn  ( ℂ  ×  ( BaseSet ‘ 𝑈 ) ) )  | 
						
						
							| 35 | 
							
								
							 | 
							ssid | 
							⊢ ℂ  ⊆  ℂ  | 
						
						
							| 36 | 
							
								5 1 4
							 | 
							sspba | 
							⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  𝐻 )  →  𝑌  ⊆  ( BaseSet ‘ 𝑈 ) )  | 
						
						
							| 37 | 
							
								
							 | 
							xpss12 | 
							⊢ ( ( ℂ  ⊆  ℂ  ∧  𝑌  ⊆  ( BaseSet ‘ 𝑈 ) )  →  ( ℂ  ×  𝑌 )  ⊆  ( ℂ  ×  ( BaseSet ‘ 𝑈 ) ) )  | 
						
						
							| 38 | 
							
								35 36 37
							 | 
							sylancr | 
							⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  𝐻 )  →  ( ℂ  ×  𝑌 )  ⊆  ( ℂ  ×  ( BaseSet ‘ 𝑈 ) ) )  | 
						
						
							| 39 | 
							
								
							 | 
							fnssres | 
							⊢ ( ( 𝑆  Fn  ( ℂ  ×  ( BaseSet ‘ 𝑈 ) )  ∧  ( ℂ  ×  𝑌 )  ⊆  ( ℂ  ×  ( BaseSet ‘ 𝑈 ) ) )  →  ( 𝑆  ↾  ( ℂ  ×  𝑌 ) )  Fn  ( ℂ  ×  𝑌 ) )  | 
						
						
							| 40 | 
							
								34 38 39
							 | 
							syl2anc | 
							⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  𝐻 )  →  ( 𝑆  ↾  ( ℂ  ×  𝑌 ) )  Fn  ( ℂ  ×  𝑌 ) )  | 
						
						
							| 41 | 
							
								
							 | 
							eqfnov | 
							⊢ ( ( 𝑅  Fn  ( ℂ  ×  𝑌 )  ∧  ( 𝑆  ↾  ( ℂ  ×  𝑌 ) )  Fn  ( ℂ  ×  𝑌 ) )  →  ( 𝑅  =  ( 𝑆  ↾  ( ℂ  ×  𝑌 ) )  ↔  ( ( ℂ  ×  𝑌 )  =  ( ℂ  ×  𝑌 )  ∧  ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈  𝑌 ( 𝑥 𝑅 𝑦 )  =  ( 𝑥 ( 𝑆  ↾  ( ℂ  ×  𝑌 ) ) 𝑦 ) ) ) )  | 
						
						
							| 42 | 
							
								13 40 41
							 | 
							syl2anc | 
							⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  𝐻 )  →  ( 𝑅  =  ( 𝑆  ↾  ( ℂ  ×  𝑌 ) )  ↔  ( ( ℂ  ×  𝑌 )  =  ( ℂ  ×  𝑌 )  ∧  ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈  𝑌 ( 𝑥 𝑅 𝑦 )  =  ( 𝑥 ( 𝑆  ↾  ( ℂ  ×  𝑌 ) ) 𝑦 ) ) ) )  | 
						
						
							| 43 | 
							
								32 42
							 | 
							mpbird | 
							⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  𝐻 )  →  𝑅  =  ( 𝑆  ↾  ( ℂ  ×  𝑌 ) ) )  |