Description: Subclass in terms of proper subclass. (Contributed by NM, 25-Feb-1996)
Ref | Expression | ||
---|---|---|---|
Assertion | sspss | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfpss2 | ⊢ ( 𝐴 ⊊ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵 ) ) | |
2 | 1 | simplbi2 | ⊢ ( 𝐴 ⊆ 𝐵 → ( ¬ 𝐴 = 𝐵 → 𝐴 ⊊ 𝐵 ) ) |
3 | 2 | con1d | ⊢ ( 𝐴 ⊆ 𝐵 → ( ¬ 𝐴 ⊊ 𝐵 → 𝐴 = 𝐵 ) ) |
4 | 3 | orrd | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ) |
5 | pssss | ⊢ ( 𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵 ) | |
6 | eqimss | ⊢ ( 𝐴 = 𝐵 → 𝐴 ⊆ 𝐵 ) | |
7 | 5 6 | jaoi | ⊢ ( ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) → 𝐴 ⊆ 𝐵 ) |
8 | 4 7 | impbii | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ) |