Metamath Proof Explorer


Theorem sspsstr

Description: Transitive law for subclass and proper subclass. (Contributed by NM, 3-Apr-1996)

Ref Expression
Assertion sspsstr ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 sspss ( 𝐴𝐵 ↔ ( 𝐴𝐵𝐴 = 𝐵 ) )
2 psstr ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )
3 2 ex ( 𝐴𝐵 → ( 𝐵𝐶𝐴𝐶 ) )
4 psseq1 ( 𝐴 = 𝐵 → ( 𝐴𝐶𝐵𝐶 ) )
5 4 biimprd ( 𝐴 = 𝐵 → ( 𝐵𝐶𝐴𝐶 ) )
6 3 5 jaoi ( ( 𝐴𝐵𝐴 = 𝐵 ) → ( 𝐵𝐶𝐴𝐶 ) )
7 6 imp ( ( ( 𝐴𝐵𝐴 = 𝐵 ) ∧ 𝐵𝐶 ) → 𝐴𝐶 )
8 1 7 sylanb ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )