Description: Transitive law for subclass and proper subclass. (Contributed by NM, 3-Apr-1996)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sspsstr | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊊ 𝐶 ) → 𝐴 ⊊ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspss | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ) | |
| 2 | psstr | ⊢ ( ( 𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶 ) → 𝐴 ⊊ 𝐶 ) | |
| 3 | 2 | ex | ⊢ ( 𝐴 ⊊ 𝐵 → ( 𝐵 ⊊ 𝐶 → 𝐴 ⊊ 𝐶 ) ) |
| 4 | psseq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶 ) ) | |
| 5 | 4 | biimprd | ⊢ ( 𝐴 = 𝐵 → ( 𝐵 ⊊ 𝐶 → 𝐴 ⊊ 𝐶 ) ) |
| 6 | 3 5 | jaoi | ⊢ ( ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) → ( 𝐵 ⊊ 𝐶 → 𝐴 ⊊ 𝐶 ) ) |
| 7 | 6 | imp | ⊢ ( ( ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ∧ 𝐵 ⊊ 𝐶 ) → 𝐴 ⊊ 𝐶 ) |
| 8 | 1 7 | sylanb | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊊ 𝐶 ) → 𝐴 ⊊ 𝐶 ) |