Metamath Proof Explorer
Description: Transitivity involving subclass and proper subclass inclusion.
Deduction form of sspsstr . (Contributed by David Moews, 1-May-2017)
|
|
Ref |
Expression |
|
Hypotheses |
sspsstrd.1 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
|
|
sspsstrd.2 |
⊢ ( 𝜑 → 𝐵 ⊊ 𝐶 ) |
|
Assertion |
sspsstrd |
⊢ ( 𝜑 → 𝐴 ⊊ 𝐶 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sspsstrd.1 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
| 2 |
|
sspsstrd.2 |
⊢ ( 𝜑 → 𝐵 ⊊ 𝐶 ) |
| 3 |
|
sspsstr |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊊ 𝐶 ) → 𝐴 ⊊ 𝐶 ) |
| 4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → 𝐴 ⊊ 𝐶 ) |