Metamath Proof Explorer


Theorem sspsstrd

Description: Transitivity involving subclass and proper subclass inclusion. Deduction form of sspsstr . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses sspsstrd.1 ( 𝜑𝐴𝐵 )
sspsstrd.2 ( 𝜑𝐵𝐶 )
Assertion sspsstrd ( 𝜑𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 sspsstrd.1 ( 𝜑𝐴𝐵 )
2 sspsstrd.2 ( 𝜑𝐵𝐶 )
3 sspsstr ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )
4 1 2 3 syl2anc ( 𝜑𝐴𝐶 )