| Step |
Hyp |
Ref |
Expression |
| 1 |
|
or32 |
⊢ ( ( ( 𝐴 ⊊ 𝐵 ∨ 𝐵 ⊊ 𝐴 ) ∨ 𝐴 = 𝐵 ) ↔ ( ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ∨ 𝐵 ⊊ 𝐴 ) ) |
| 2 |
|
sspss |
⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ) |
| 3 |
|
sspss |
⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐵 ⊊ 𝐴 ∨ 𝐵 = 𝐴 ) ) |
| 4 |
|
eqcom |
⊢ ( 𝐵 = 𝐴 ↔ 𝐴 = 𝐵 ) |
| 5 |
4
|
orbi2i |
⊢ ( ( 𝐵 ⊊ 𝐴 ∨ 𝐵 = 𝐴 ) ↔ ( 𝐵 ⊊ 𝐴 ∨ 𝐴 = 𝐵 ) ) |
| 6 |
3 5
|
bitri |
⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐵 ⊊ 𝐴 ∨ 𝐴 = 𝐵 ) ) |
| 7 |
2 6
|
orbi12i |
⊢ ( ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ↔ ( ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ∨ ( 𝐵 ⊊ 𝐴 ∨ 𝐴 = 𝐵 ) ) ) |
| 8 |
|
orordir |
⊢ ( ( ( 𝐴 ⊊ 𝐵 ∨ 𝐵 ⊊ 𝐴 ) ∨ 𝐴 = 𝐵 ) ↔ ( ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ∨ ( 𝐵 ⊊ 𝐴 ∨ 𝐴 = 𝐵 ) ) ) |
| 9 |
7 8
|
bitr4i |
⊢ ( ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ↔ ( ( 𝐴 ⊊ 𝐵 ∨ 𝐵 ⊊ 𝐴 ) ∨ 𝐴 = 𝐵 ) ) |
| 10 |
|
df-3or |
⊢ ( ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ⊊ 𝐴 ) ↔ ( ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ) ∨ 𝐵 ⊊ 𝐴 ) ) |
| 11 |
1 9 10
|
3bitr4i |
⊢ ( ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ↔ ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ⊊ 𝐴 ) ) |