Metamath Proof Explorer


Theorem sspwb

Description: The powerclass construction preserves and reflects inclusion. Classes are subclasses if and only if their power classes are subclasses. Exercise 18 of TakeutiZaring p. 18. (Contributed by NM, 13-Oct-1996)

Ref Expression
Assertion sspwb ( 𝐴𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵 )

Proof

Step Hyp Ref Expression
1 sspw ( 𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵 )
2 ssel ( 𝒫 𝐴 ⊆ 𝒫 𝐵 → ( { 𝑥 } ∈ 𝒫 𝐴 → { 𝑥 } ∈ 𝒫 𝐵 ) )
3 snex { 𝑥 } ∈ V
4 3 elpw ( { 𝑥 } ∈ 𝒫 𝐴 ↔ { 𝑥 } ⊆ 𝐴 )
5 vex 𝑥 ∈ V
6 5 snss ( 𝑥𝐴 ↔ { 𝑥 } ⊆ 𝐴 )
7 4 6 bitr4i ( { 𝑥 } ∈ 𝒫 𝐴𝑥𝐴 )
8 3 elpw ( { 𝑥 } ∈ 𝒫 𝐵 ↔ { 𝑥 } ⊆ 𝐵 )
9 5 snss ( 𝑥𝐵 ↔ { 𝑥 } ⊆ 𝐵 )
10 8 9 bitr4i ( { 𝑥 } ∈ 𝒫 𝐵𝑥𝐵 )
11 2 7 10 3imtr3g ( 𝒫 𝐴 ⊆ 𝒫 𝐵 → ( 𝑥𝐴𝑥𝐵 ) )
12 11 ssrdv ( 𝒫 𝐴 ⊆ 𝒫 𝐵𝐴𝐵 )
13 1 12 impbii ( 𝐴𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵 )