Metamath Proof Explorer


Theorem sspwimp

Description: If a class is a subclass of another class, then its power class is a subclass of that other class's power class. Left-to-right implication of Exercise 18 of TakeutiZaring p. 18. For the biconditional, see sspwb . The proof sspwimp , using conventional notation, was translated from virtual deduction form, sspwimpVD , using a translation program. (Contributed by Alan Sare, 23-Apr-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion sspwimp ( 𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵 )

Proof

Step Hyp Ref Expression
1 vex 𝑥 ∈ V
2 1 a1i ( ⊤ → 𝑥 ∈ V )
3 id ( 𝐴𝐵𝐴𝐵 )
4 id ( 𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐴 )
5 elpwi ( 𝑥 ∈ 𝒫 𝐴𝑥𝐴 )
6 4 5 syl ( 𝑥 ∈ 𝒫 𝐴𝑥𝐴 )
7 sstr ( ( 𝑥𝐴𝐴𝐵 ) → 𝑥𝐵 )
8 7 ancoms ( ( 𝐴𝐵𝑥𝐴 ) → 𝑥𝐵 )
9 3 6 8 syl2an ( ( 𝐴𝐵𝑥 ∈ 𝒫 𝐴 ) → 𝑥𝐵 )
10 2 9 elpwgded ( ( ⊤ ∧ ( 𝐴𝐵𝑥 ∈ 𝒫 𝐴 ) ) → 𝑥 ∈ 𝒫 𝐵 )
11 2 9 10 uun0.1 ( ( 𝐴𝐵𝑥 ∈ 𝒫 𝐴 ) → 𝑥 ∈ 𝒫 𝐵 )
12 11 ex ( 𝐴𝐵 → ( 𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵 ) )
13 12 alrimiv ( 𝐴𝐵 → ∀ 𝑥 ( 𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵 ) )
14 dfss2 ( 𝒫 𝐴 ⊆ 𝒫 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵 ) )
15 14 biimpri ( ∀ 𝑥 ( 𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵 ) → 𝒫 𝐴 ⊆ 𝒫 𝐵 )
16 13 15 syl ( 𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵 )
17 16 iin1 ( 𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵 )