| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							vex | 
							⊢ 𝑥  ∈  V  | 
						
						
							| 2 | 
							
								
							 | 
							id | 
							⊢ ( 𝐴  ⊆  𝐵  →  𝐴  ⊆  𝐵 )  | 
						
						
							| 3 | 
							
								
							 | 
							id | 
							⊢ ( 𝑥  ∈  𝒫  𝐴  →  𝑥  ∈  𝒫  𝐴 )  | 
						
						
							| 4 | 
							
								
							 | 
							elpwi | 
							⊢ ( 𝑥  ∈  𝒫  𝐴  →  𝑥  ⊆  𝐴 )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							syl | 
							⊢ ( 𝑥  ∈  𝒫  𝐴  →  𝑥  ⊆  𝐴 )  | 
						
						
							| 6 | 
							
								
							 | 
							sstr2 | 
							⊢ ( 𝑥  ⊆  𝐴  →  ( 𝐴  ⊆  𝐵  →  𝑥  ⊆  𝐵 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							impcom | 
							⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝑥  ⊆  𝐴 )  →  𝑥  ⊆  𝐵 )  | 
						
						
							| 8 | 
							
								2 5 7
							 | 
							syl2an | 
							⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝑥  ∈  𝒫  𝐴 )  →  𝑥  ⊆  𝐵 )  | 
						
						
							| 9 | 
							
								
							 | 
							elpwg | 
							⊢ ( 𝑥  ∈  V  →  ( 𝑥  ∈  𝒫  𝐵  ↔  𝑥  ⊆  𝐵 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							biimpar | 
							⊢ ( ( 𝑥  ∈  V  ∧  𝑥  ⊆  𝐵 )  →  𝑥  ∈  𝒫  𝐵 )  | 
						
						
							| 11 | 
							
								1 8 10
							 | 
							eel021old | 
							⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝑥  ∈  𝒫  𝐴 )  →  𝑥  ∈  𝒫  𝐵 )  | 
						
						
							| 12 | 
							
								11
							 | 
							ex | 
							⊢ ( 𝐴  ⊆  𝐵  →  ( 𝑥  ∈  𝒫  𝐴  →  𝑥  ∈  𝒫  𝐵 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							alrimiv | 
							⊢ ( 𝐴  ⊆  𝐵  →  ∀ 𝑥 ( 𝑥  ∈  𝒫  𝐴  →  𝑥  ∈  𝒫  𝐵 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							df-ss | 
							⊢ ( 𝒫  𝐴  ⊆  𝒫  𝐵  ↔  ∀ 𝑥 ( 𝑥  ∈  𝒫  𝐴  →  𝑥  ∈  𝒫  𝐵 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							biimpri | 
							⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝒫  𝐴  →  𝑥  ∈  𝒫  𝐵 )  →  𝒫  𝐴  ⊆  𝒫  𝐵 )  | 
						
						
							| 16 | 
							
								13 15
							 | 
							syl | 
							⊢ ( 𝐴  ⊆  𝐵  →  𝒫  𝐴  ⊆  𝒫  𝐵 )  | 
						
						
							| 17 | 
							
								16
							 | 
							iin1 | 
							⊢ ( 𝐴  ⊆  𝐵  →  𝒫  𝐴  ⊆  𝒫  𝐵 )  |