Metamath Proof Explorer


Theorem sspwuni

Description: Subclass relationship for power class and union. (Contributed by NM, 18-Jul-2006)

Ref Expression
Assertion sspwuni ( 𝐴 ⊆ 𝒫 𝐵 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 velpw ( 𝑥 ∈ 𝒫 𝐵𝑥𝐵 )
2 1 ralbii ( ∀ 𝑥𝐴 𝑥 ∈ 𝒫 𝐵 ↔ ∀ 𝑥𝐴 𝑥𝐵 )
3 dfss3 ( 𝐴 ⊆ 𝒫 𝐵 ↔ ∀ 𝑥𝐴 𝑥 ∈ 𝒫 𝐵 )
4 unissb ( 𝐴𝐵 ↔ ∀ 𝑥𝐴 𝑥𝐵 )
5 2 3 4 3bitr4i ( 𝐴 ⊆ 𝒫 𝐵 𝐴𝐵 )