Metamath Proof Explorer


Theorem ssrab

Description: Subclass of a restricted class abstraction. (Contributed by NM, 16-Aug-2006)

Ref Expression
Assertion ssrab ( 𝐵 ⊆ { 𝑥𝐴𝜑 } ↔ ( 𝐵𝐴 ∧ ∀ 𝑥𝐵 𝜑 ) )

Proof

Step Hyp Ref Expression
1 df-rab { 𝑥𝐴𝜑 } = { 𝑥 ∣ ( 𝑥𝐴𝜑 ) }
2 1 sseq2i ( 𝐵 ⊆ { 𝑥𝐴𝜑 } ↔ 𝐵 ⊆ { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } )
3 ssab ( 𝐵 ⊆ { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ↔ ∀ 𝑥 ( 𝑥𝐵 → ( 𝑥𝐴𝜑 ) ) )
4 dfss3 ( 𝐵𝐴 ↔ ∀ 𝑥𝐵 𝑥𝐴 )
5 4 anbi1i ( ( 𝐵𝐴 ∧ ∀ 𝑥𝐵 𝜑 ) ↔ ( ∀ 𝑥𝐵 𝑥𝐴 ∧ ∀ 𝑥𝐵 𝜑 ) )
6 r19.26 ( ∀ 𝑥𝐵 ( 𝑥𝐴𝜑 ) ↔ ( ∀ 𝑥𝐵 𝑥𝐴 ∧ ∀ 𝑥𝐵 𝜑 ) )
7 df-ral ( ∀ 𝑥𝐵 ( 𝑥𝐴𝜑 ) ↔ ∀ 𝑥 ( 𝑥𝐵 → ( 𝑥𝐴𝜑 ) ) )
8 5 6 7 3bitr2ri ( ∀ 𝑥 ( 𝑥𝐵 → ( 𝑥𝐴𝜑 ) ) ↔ ( 𝐵𝐴 ∧ ∀ 𝑥𝐵 𝜑 ) )
9 2 3 8 3bitri ( 𝐵 ⊆ { 𝑥𝐴𝜑 } ↔ ( 𝐵𝐴 ∧ ∀ 𝑥𝐵 𝜑 ) )