Description: Subclass relation for a restricted class. (Contributed by NM, 19-Mar-1997) (Proof shortened by BJ and SN, 8-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssrab2 | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrabi | ⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } → 𝑦 ∈ 𝐴 ) | |
| 2 | 1 | ssriv | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ 𝐴 |