Description: Subclass relation for a restricted class. (Contributed by NM, 19-Mar-1997) (Proof shortened by BJ and SN, 8-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | ssrab2 | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrabi | ⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } → 𝑦 ∈ 𝐴 ) | |
2 | 1 | ssriv | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ 𝐴 |