Metamath Proof Explorer
Description: Subclass relation for a restricted class. (Contributed by Glauco
Siliprandi, 26-Jun-2021)
|
|
Ref |
Expression |
|
Hypothesis |
ssrab2f.1 |
⊢ Ⅎ 𝑥 𝐴 |
|
Assertion |
ssrab2f |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ 𝐴 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ssrab2f.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝐴 ∣ 𝜑 } |
3 |
2 1
|
dfss3f |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ 𝐴 ↔ ∀ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } 𝑥 ∈ 𝐴 ) |
4 |
|
rabidim1 |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝜑 } → 𝑥 ∈ 𝐴 ) |
5 |
3 4
|
mprgbir |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ 𝐴 |