Metamath Proof Explorer


Theorem ssrab2f

Description: Subclass relation for a restricted class. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis ssrab2f.1 𝑥 𝐴
Assertion ssrab2f { 𝑥𝐴𝜑 } ⊆ 𝐴

Proof

Step Hyp Ref Expression
1 ssrab2f.1 𝑥 𝐴
2 nfrab1 𝑥 { 𝑥𝐴𝜑 }
3 2 1 dfss3f ( { 𝑥𝐴𝜑 } ⊆ 𝐴 ↔ ∀ 𝑥 ∈ { 𝑥𝐴𝜑 } 𝑥𝐴 )
4 rabidim1 ( 𝑥 ∈ { 𝑥𝐴𝜑 } → 𝑥𝐴 )
5 3 4 mprgbir { 𝑥𝐴𝜑 } ⊆ 𝐴