Metamath Proof Explorer


Theorem ssrab3

Description: Subclass relation for a restricted class abstraction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)

Ref Expression
Hypothesis ssrab3.1 𝐵 = { 𝑥𝐴𝜑 }
Assertion ssrab3 𝐵𝐴

Proof

Step Hyp Ref Expression
1 ssrab3.1 𝐵 = { 𝑥𝐴𝜑 }
2 ssrab2 { 𝑥𝐴𝜑 } ⊆ 𝐴
3 1 2 eqsstri 𝐵𝐴