Metamath Proof Explorer
Description: Subclass of a restricted class abstraction (deduction form).
(Contributed by Glauco Siliprandi, 5-Jan-2025)
|
|
Ref |
Expression |
|
Hypotheses |
ssrabdf.1 |
⊢ Ⅎ 𝑥 𝐴 |
|
|
ssrabdf.2 |
⊢ Ⅎ 𝑥 𝐵 |
|
|
ssrabdf.3 |
⊢ Ⅎ 𝑥 𝜑 |
|
|
ssrabdf.4 |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) |
|
|
ssrabdf.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝜓 ) |
|
Assertion |
ssrabdf |
⊢ ( 𝜑 → 𝐵 ⊆ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ssrabdf.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
ssrabdf.2 |
⊢ Ⅎ 𝑥 𝐵 |
3 |
|
ssrabdf.3 |
⊢ Ⅎ 𝑥 𝜑 |
4 |
|
ssrabdf.4 |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) |
5 |
|
ssrabdf.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝜓 ) |
6 |
3 5
|
ralrimia |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 𝜓 ) |
7 |
2 1
|
ssrabf |
⊢ ( 𝐵 ⊆ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ↔ ( 𝐵 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 𝜓 ) ) |
8 |
4 6 7
|
sylanbrc |
⊢ ( 𝜑 → 𝐵 ⊆ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) |