Metamath Proof Explorer
		
		
		
		Description:  Subclass of a restricted class abstraction (deduction form).
       (Contributed by Glauco Siliprandi, 5-Jan-2025)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						ssrabdf.1 | 
						⊢ Ⅎ 𝑥 𝐴  | 
					
					
						 | 
						 | 
						ssrabdf.2 | 
						⊢ Ⅎ 𝑥 𝐵  | 
					
					
						 | 
						 | 
						ssrabdf.3 | 
						⊢ Ⅎ 𝑥 𝜑  | 
					
					
						 | 
						 | 
						ssrabdf.4 | 
						⊢ ( 𝜑  →  𝐵  ⊆  𝐴 )  | 
					
					
						 | 
						 | 
						ssrabdf.5 | 
						⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝜓 )  | 
					
				
					 | 
					Assertion | 
					ssrabdf | 
					⊢  ( 𝜑  →  𝐵  ⊆  { 𝑥  ∈  𝐴  ∣  𝜓 } )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ssrabdf.1 | 
							⊢ Ⅎ 𝑥 𝐴  | 
						
						
							| 2 | 
							
								
							 | 
							ssrabdf.2 | 
							⊢ Ⅎ 𝑥 𝐵  | 
						
						
							| 3 | 
							
								
							 | 
							ssrabdf.3 | 
							⊢ Ⅎ 𝑥 𝜑  | 
						
						
							| 4 | 
							
								
							 | 
							ssrabdf.4 | 
							⊢ ( 𝜑  →  𝐵  ⊆  𝐴 )  | 
						
						
							| 5 | 
							
								
							 | 
							ssrabdf.5 | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝜓 )  | 
						
						
							| 6 | 
							
								3 5
							 | 
							ralrimia | 
							⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐵 𝜓 )  | 
						
						
							| 7 | 
							
								2 1
							 | 
							ssrabf | 
							⊢ ( 𝐵  ⊆  { 𝑥  ∈  𝐴  ∣  𝜓 }  ↔  ( 𝐵  ⊆  𝐴  ∧  ∀ 𝑥  ∈  𝐵 𝜓 ) )  | 
						
						
							| 8 | 
							
								4 6 7
							 | 
							sylanbrc | 
							⊢ ( 𝜑  →  𝐵  ⊆  { 𝑥  ∈  𝐴  ∣  𝜓 } )  |