Metamath Proof Explorer


Theorem ssrabdf

Description: Subclass of a restricted class abstraction (deduction form). (Contributed by Glauco Siliprandi, 5-Jan-2025)

Ref Expression
Hypotheses ssrabdf.1 𝑥 𝐴
ssrabdf.2 𝑥 𝐵
ssrabdf.3 𝑥 𝜑
ssrabdf.4 ( 𝜑𝐵𝐴 )
ssrabdf.5 ( ( 𝜑𝑥𝐵 ) → 𝜓 )
Assertion ssrabdf ( 𝜑𝐵 ⊆ { 𝑥𝐴𝜓 } )

Proof

Step Hyp Ref Expression
1 ssrabdf.1 𝑥 𝐴
2 ssrabdf.2 𝑥 𝐵
3 ssrabdf.3 𝑥 𝜑
4 ssrabdf.4 ( 𝜑𝐵𝐴 )
5 ssrabdf.5 ( ( 𝜑𝑥𝐵 ) → 𝜓 )
6 3 5 ralrimia ( 𝜑 → ∀ 𝑥𝐵 𝜓 )
7 2 1 ssrabf ( 𝐵 ⊆ { 𝑥𝐴𝜓 } ↔ ( 𝐵𝐴 ∧ ∀ 𝑥𝐵 𝜓 ) )
8 4 6 7 sylanbrc ( 𝜑𝐵 ⊆ { 𝑥𝐴𝜓 } )