Metamath Proof Explorer


Theorem ssrabdv

Description: Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 31-Aug-2006)

Ref Expression
Hypotheses ssrabdv.1 ( 𝜑𝐵𝐴 )
ssrabdv.2 ( ( 𝜑𝑥𝐵 ) → 𝜓 )
Assertion ssrabdv ( 𝜑𝐵 ⊆ { 𝑥𝐴𝜓 } )

Proof

Step Hyp Ref Expression
1 ssrabdv.1 ( 𝜑𝐵𝐴 )
2 ssrabdv.2 ( ( 𝜑𝑥𝐵 ) → 𝜓 )
3 2 ralrimiva ( 𝜑 → ∀ 𝑥𝐵 𝜓 )
4 ssrab ( 𝐵 ⊆ { 𝑥𝐴𝜓 } ↔ ( 𝐵𝐴 ∧ ∀ 𝑥𝐵 𝜓 ) )
5 1 3 4 sylanbrc ( 𝜑𝐵 ⊆ { 𝑥𝐴𝜓 } )