Metamath Proof Explorer
		
		
		
		Description:  Subclass of a restricted class abstraction (deduction form).
       (Contributed by NM, 31-Aug-2006)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | ssrabdv.1 | ⊢ ( 𝜑  →  𝐵  ⊆  𝐴 ) | 
					
						|  |  | ssrabdv.2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝜓 ) | 
				
					|  | Assertion | ssrabdv | ⊢  ( 𝜑  →  𝐵  ⊆  { 𝑥  ∈  𝐴  ∣  𝜓 } ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssrabdv.1 | ⊢ ( 𝜑  →  𝐵  ⊆  𝐴 ) | 
						
							| 2 |  | ssrabdv.2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝜓 ) | 
						
							| 3 | 2 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐵 𝜓 ) | 
						
							| 4 |  | ssrab | ⊢ ( 𝐵  ⊆  { 𝑥  ∈  𝐴  ∣  𝜓 }  ↔  ( 𝐵  ⊆  𝐴  ∧  ∀ 𝑥  ∈  𝐵 𝜓 ) ) | 
						
							| 5 | 1 3 4 | sylanbrc | ⊢ ( 𝜑  →  𝐵  ⊆  { 𝑥  ∈  𝐴  ∣  𝜓 } ) |