Metamath Proof Explorer
Description: Subclass of a restricted class abstraction (deduction form).
(Contributed by NM, 31-Aug-2006)
|
|
Ref |
Expression |
|
Hypotheses |
ssrabdv.1 |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) |
|
|
ssrabdv.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝜓 ) |
|
Assertion |
ssrabdv |
⊢ ( 𝜑 → 𝐵 ⊆ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssrabdv.1 |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) |
| 2 |
|
ssrabdv.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝜓 ) |
| 3 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 𝜓 ) |
| 4 |
|
ssrab |
⊢ ( 𝐵 ⊆ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ↔ ( 𝐵 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝐵 𝜓 ) ) |
| 5 |
1 3 4
|
sylanbrc |
⊢ ( 𝜑 → 𝐵 ⊆ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ) |