Metamath Proof Explorer


Theorem ssralv

Description: Quantification restricted to a subclass. (Contributed by NM, 11-Mar-2006)

Ref Expression
Assertion ssralv ( 𝐴𝐵 → ( ∀ 𝑥𝐵 𝜑 → ∀ 𝑥𝐴 𝜑 ) )

Proof

Step Hyp Ref Expression
1 ssel ( 𝐴𝐵 → ( 𝑥𝐴𝑥𝐵 ) )
2 1 imim1d ( 𝐴𝐵 → ( ( 𝑥𝐵𝜑 ) → ( 𝑥𝐴𝜑 ) ) )
3 2 ralimdv2 ( 𝐴𝐵 → ( ∀ 𝑥𝐵 𝜑 → ∀ 𝑥𝐴 𝜑 ) )