Step |
Hyp |
Ref |
Expression |
1 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) |
2 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 |
3 |
|
ssralv |
⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐷 𝜑 ) ) |
4 |
3
|
adantr |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐷 𝜑 ) ) |
5 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐷 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐷 𝜑 ) ) |
6 |
4 5
|
syl6ib |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐷 𝜑 ) ) ) |
7 |
|
sp |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐷 𝜑 ) → ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐷 𝜑 ) ) |
8 |
6 7
|
syl6 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 → ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐷 𝜑 ) ) ) |
9 |
|
ssralv |
⊢ ( 𝐶 ⊆ 𝐷 → ( ∀ 𝑦 ∈ 𝐷 𝜑 → ∀ 𝑦 ∈ 𝐶 𝜑 ) ) |
10 |
9
|
adantl |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) → ( ∀ 𝑦 ∈ 𝐷 𝜑 → ∀ 𝑦 ∈ 𝐶 𝜑 ) ) |
11 |
8 10
|
syl6d |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 → ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐶 𝜑 ) ) ) |
12 |
1 2 11
|
ralrimd |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 𝜑 ) ) |