Description: Quantification restricted to a subclass for two quantifiers. ssralv for two quantifiers. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. ssralv2 is ssralv2VD without virtual deductions and was automatically derived from ssralv2VD .
1:: | |- (. ( A C_ B /\ C C_ D ) ->. ( A C_ B /\ C C_ D ) ). |
2:: | |- (. ( A C_ B /\ C C_ D ) ,. A. x e. B A. y e. D ph ->. A. x e. B A. y e. D ph ). |
3:1: | |- (. ( A C_ B /\ C C_ D ) ->. A C_ B ). |
4:3,2: | |- (. ( A C_ B /\ C C_ D ) ,. A. x e. B A. y e. D ph ->. A. x e. A A. y e. D ph ). |
5:4: | |- (. ( A C_ B /\ C C_ D ) ,. A. x e. B A. y e. D ph ->. A. x ( x e. A -> A. y e. D ph ) ). |
6:5: | |- (. ( A C_ B /\ C C_ D ) ,. A. x e. B A. y e. D ph ->. ( x e. A -> A. y e. D ph ) ). |
7:: | |- (. ( A C_ B /\ C C_ D ) ,. A. x e. B A. y e. D ph , x e. A ->. x e. A ). |
8:7,6: | |- (. ( A C_ B /\ C C_ D ) ,. A. x e. B A. y e. D ph , x e. A ->. A. y e. D ph ). |
9:1: | |- (. ( A C_ B /\ C C_ D ) ->. C C_ D ). |
10:9,8: | |- (. ( A C_ B /\ C C_ D ) ,. A. x e. B A. y e. D ph , x e. A ->. A. y e. C ph ). |
11:10: | |- (. ( A C_ B /\ C C_ D ) ,. A. x e. B A. y e. D ph ->. ( x e. A -> A. y e. C ph ) ). |
12:: | |- ( ( A C_ B /\ C C_ D ) -> A. x ( A C_ B /\ C C_ D ) ) |
13:: | |- ( A. x e. B A. y e. D ph -> A. x A. x e. B A. y e. D ph ) |
14:12,13,11: | |- (. ( A C_ B /\ C C_ D ) ,. A. x e. B A. y e. D ph ->. A. x ( x e. A -> A. y e. C ph ) ). |
15:14: | |- (. ( A C_ B /\ C C_ D ) ,. A. x e. B A. y e. D ph ->. A. x e. A A. y e. C ph ). |
16:15: | |- (. ( A C_ B /\ C C_ D ) ->. ( A. x e. B A. y e. D ph -> A. x e. A A. y e. C ph ) ). |
qed:16: | |- ( ( A C_ B /\ C C_ D ) -> ( A. x e. B A. y e. D ph -> A. x e. A A. y e. C ph ) ) |
Ref | Expression | ||
---|---|---|---|
Assertion | ssralv2VD | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) → ∀ 𝑥 ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) ) | |
2 | hbra1 | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 → ∀ 𝑥 ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 ) | |
3 | idn1 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) ▶ ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) ) | |
4 | simpr | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) → 𝐶 ⊆ 𝐷 ) | |
5 | 3 4 | e1a | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) ▶ 𝐶 ⊆ 𝐷 ) |
6 | idn3 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) , ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 , 𝑥 ∈ 𝐴 ▶ 𝑥 ∈ 𝐴 ) | |
7 | simpl | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) → 𝐴 ⊆ 𝐵 ) | |
8 | 3 7 | e1a | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) ▶ 𝐴 ⊆ 𝐵 ) |
9 | idn2 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) , ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 ▶ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 ) | |
10 | ssralv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐷 𝜑 ) ) | |
11 | 8 9 10 | e12 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) , ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 ▶ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐷 𝜑 ) |
12 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐷 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐷 𝜑 ) ) | |
13 | 12 | biimpi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐷 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐷 𝜑 ) ) |
14 | 11 13 | e2 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) , ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 ▶ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐷 𝜑 ) ) |
15 | sp | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐷 𝜑 ) → ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐷 𝜑 ) ) | |
16 | 14 15 | e2 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) , ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 ▶ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐷 𝜑 ) ) |
17 | pm2.27 | ⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐷 𝜑 ) → ∀ 𝑦 ∈ 𝐷 𝜑 ) ) | |
18 | 6 16 17 | e32 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) , ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 , 𝑥 ∈ 𝐴 ▶ ∀ 𝑦 ∈ 𝐷 𝜑 ) |
19 | ssralv | ⊢ ( 𝐶 ⊆ 𝐷 → ( ∀ 𝑦 ∈ 𝐷 𝜑 → ∀ 𝑦 ∈ 𝐶 𝜑 ) ) | |
20 | 5 18 19 | e13 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) , ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 , 𝑥 ∈ 𝐴 ▶ ∀ 𝑦 ∈ 𝐶 𝜑 ) |
21 | 20 | in3 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) , ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 ▶ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐶 𝜑 ) ) |
22 | 1 2 21 | gen21nv | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) , ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 ▶ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐶 𝜑 ) ) |
23 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐶 𝜑 ) ) | |
24 | 23 | biimpri | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐶 𝜑 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 𝜑 ) |
25 | 22 24 | e2 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) , ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 ▶ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 𝜑 ) |
26 | 25 | in2 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) ▶ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 𝜑 ) ) |
27 | 26 | in1 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐷 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 𝜑 ) ) |