Description: Deduction based on subclass definition. (Contributed by Thierry Arnoux, 8-Mar-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ssrd.0 | ⊢ Ⅎ 𝑥 𝜑 | |
ssrd.1 | ⊢ Ⅎ 𝑥 𝐴 | ||
ssrd.2 | ⊢ Ⅎ 𝑥 𝐵 | ||
ssrd.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | ||
Assertion | ssrd | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrd.0 | ⊢ Ⅎ 𝑥 𝜑 | |
2 | ssrd.1 | ⊢ Ⅎ 𝑥 𝐴 | |
3 | ssrd.2 | ⊢ Ⅎ 𝑥 𝐵 | |
4 | ssrd.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
5 | 1 4 | alrimi | ⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
6 | 2 3 | dfss2f | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
7 | 5 6 | sylibr | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |