Metamath Proof Explorer


Theorem ssrd

Description: Deduction based on subclass definition. (Contributed by Thierry Arnoux, 8-Mar-2017)

Ref Expression
Hypotheses ssrd.0 𝑥 𝜑
ssrd.1 𝑥 𝐴
ssrd.2 𝑥 𝐵
ssrd.3 ( 𝜑 → ( 𝑥𝐴𝑥𝐵 ) )
Assertion ssrd ( 𝜑𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 ssrd.0 𝑥 𝜑
2 ssrd.1 𝑥 𝐴
3 ssrd.2 𝑥 𝐵
4 ssrd.3 ( 𝜑 → ( 𝑥𝐴𝑥𝐵 ) )
5 1 4 alrimi ( 𝜑 → ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
6 2 3 dfss2f ( 𝐴𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
7 5 6 sylibr ( 𝜑𝐴𝐵 )