Description: Deduction based on subclass definition. (Contributed by Thierry Arnoux, 8-Mar-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ssrd.0 | ⊢ Ⅎ 𝑥 𝜑 | |
| ssrd.1 | ⊢ Ⅎ 𝑥 𝐴 | ||
| ssrd.2 | ⊢ Ⅎ 𝑥 𝐵 | ||
| ssrd.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | ||
| Assertion | ssrd | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrd.0 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | ssrd.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 3 | ssrd.2 | ⊢ Ⅎ 𝑥 𝐵 | |
| 4 | ssrd.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
| 5 | 1 4 | alrimi | ⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 6 | 2 3 | dfssf | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 7 | 5 6 | sylibr | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |