Description: Deduction based on subclass definition. (Contributed by NM, 15-Nov-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ssrdv.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
| Assertion | ssrdv | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrdv.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
| 2 | 1 | alrimiv | ⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 3 | df-ss | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
| 4 | 2 3 | sylibr | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |