Metamath Proof Explorer


Theorem ssrel

Description: A subclass relationship depends only on a relation's ordered pairs. Theorem 3.2(i) of Monk1 p. 33. (Contributed by NM, 2-Aug-1994) (Proof shortened by Andrew Salmon, 27-Aug-2011) Remove dependency on ax-sep , ax-nul , ax-pr . (Revised by KP, 25-Oct-2021)

Ref Expression
Assertion ssrel ( Rel 𝐴 → ( 𝐴𝐵 ↔ ∀ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 ssel ( 𝐴𝐵 → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) )
2 1 alrimivv ( 𝐴𝐵 → ∀ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) )
3 df-rel ( Rel 𝐴𝐴 ⊆ ( V × V ) )
4 dfss2 ( 𝐴 ⊆ ( V × V ) ↔ ∀ 𝑧 ( 𝑧𝐴𝑧 ∈ ( V × V ) ) )
5 3 4 sylbb ( Rel 𝐴 → ∀ 𝑧 ( 𝑧𝐴𝑧 ∈ ( V × V ) ) )
6 df-xp ( V × V ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) }
7 df-opab { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) } = { 𝑧 ∣ ∃ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ) }
8 6 7 eqtri ( V × V ) = { 𝑧 ∣ ∃ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ) }
9 8 abeq2i ( 𝑧 ∈ ( V × V ) ↔ ∃ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ) )
10 simpl ( ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ) → 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ )
11 10 2eximi ( ∃ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ) → ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ )
12 9 11 sylbi ( 𝑧 ∈ ( V × V ) → ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ )
13 12 imim2i ( ( 𝑧𝐴𝑧 ∈ ( V × V ) ) → ( 𝑧𝐴 → ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ) )
14 5 13 sylg ( Rel 𝐴 → ∀ 𝑧 ( 𝑧𝐴 → ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ) )
15 eleq1 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝑧𝐴 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ) )
16 eleq1 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝑧𝐵 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) )
17 15 16 imbi12d ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ( ( 𝑧𝐴𝑧𝐵 ) ↔ ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) ) )
18 17 biimprcd ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) → ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝑧𝐴𝑧𝐵 ) ) )
19 18 2alimi ( ∀ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) → ∀ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝑧𝐴𝑧𝐵 ) ) )
20 19.23vv ( ∀ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝑧𝐴𝑧𝐵 ) ) ↔ ( ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝑧𝐴𝑧𝐵 ) ) )
21 19 20 sylib ( ∀ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) → ( ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝑧𝐴𝑧𝐵 ) ) )
22 21 com23 ( ∀ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) → ( 𝑧𝐴 → ( ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → 𝑧𝐵 ) ) )
23 22 a2d ( ∀ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) → ( ( 𝑧𝐴 → ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ) → ( 𝑧𝐴𝑧𝐵 ) ) )
24 23 alimdv ( ∀ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) → ( ∀ 𝑧 ( 𝑧𝐴 → ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ) → ∀ 𝑧 ( 𝑧𝐴𝑧𝐵 ) ) )
25 14 24 syl5 ( ∀ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) → ( Rel 𝐴 → ∀ 𝑧 ( 𝑧𝐴𝑧𝐵 ) ) )
26 dfss2 ( 𝐴𝐵 ↔ ∀ 𝑧 ( 𝑧𝐴𝑧𝐵 ) )
27 25 26 syl6ibr ( ∀ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) → ( Rel 𝐴𝐴𝐵 ) )
28 27 com12 ( Rel 𝐴 → ( ∀ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) → 𝐴𝐵 ) )
29 2 28 impbid2 ( Rel 𝐴 → ( 𝐴𝐵 ↔ ∀ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) ) )