Metamath Proof Explorer


Theorem ssrelf

Description: A subclass relationship depends only on a relation's ordered pairs. Theorem 3.2(i) of Monk1 p. 33. (Contributed by NM, 2-Aug-1994) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Revised by Thierry Arnoux, 6-Nov-2017)

Ref Expression
Hypotheses eqrelrd2.1 𝑥 𝜑
eqrelrd2.2 𝑦 𝜑
eqrelrd2.3 𝑥 𝐴
eqrelrd2.4 𝑦 𝐴
eqrelrd2.5 𝑥 𝐵
eqrelrd2.6 𝑦 𝐵
Assertion ssrelf ( Rel 𝐴 → ( 𝐴𝐵 ↔ ∀ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 eqrelrd2.1 𝑥 𝜑
2 eqrelrd2.2 𝑦 𝜑
3 eqrelrd2.3 𝑥 𝐴
4 eqrelrd2.4 𝑦 𝐴
5 eqrelrd2.5 𝑥 𝐵
6 eqrelrd2.6 𝑦 𝐵
7 3 5 nfss 𝑥 𝐴𝐵
8 4 6 nfss 𝑦 𝐴𝐵
9 ssel ( 𝐴𝐵 → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) )
10 8 9 alrimi ( 𝐴𝐵 → ∀ 𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) )
11 7 10 alrimi ( 𝐴𝐵 → ∀ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) )
12 eleq1 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝑧𝐴 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ) )
13 eleq1 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝑧𝐵 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) )
14 12 13 imbi12d ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ( ( 𝑧𝐴𝑧𝐵 ) ↔ ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) ) )
15 14 biimprcd ( ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) → ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝑧𝐴𝑧𝐵 ) ) )
16 15 2alimi ( ∀ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) → ∀ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝑧𝐴𝑧𝐵 ) ) )
17 4 nfcri 𝑦 𝑧𝐴
18 6 nfcri 𝑦 𝑧𝐵
19 17 18 nfim 𝑦 ( 𝑧𝐴𝑧𝐵 )
20 19 19.23 ( ∀ 𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝑧𝐴𝑧𝐵 ) ) ↔ ( ∃ 𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝑧𝐴𝑧𝐵 ) ) )
21 20 albii ( ∀ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝑧𝐴𝑧𝐵 ) ) ↔ ∀ 𝑥 ( ∃ 𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝑧𝐴𝑧𝐵 ) ) )
22 3 nfcri 𝑥 𝑧𝐴
23 5 nfcri 𝑥 𝑧𝐵
24 22 23 nfim 𝑥 ( 𝑧𝐴𝑧𝐵 )
25 24 19.23 ( ∀ 𝑥 ( ∃ 𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝑧𝐴𝑧𝐵 ) ) ↔ ( ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝑧𝐴𝑧𝐵 ) ) )
26 21 25 bitri ( ∀ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝑧𝐴𝑧𝐵 ) ) ↔ ( ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝑧𝐴𝑧𝐵 ) ) )
27 16 26 sylib ( ∀ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) → ( ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝑧𝐴𝑧𝐵 ) ) )
28 27 com23 ( ∀ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) → ( 𝑧𝐴 → ( ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → 𝑧𝐵 ) ) )
29 28 a2d ( ∀ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) → ( ( 𝑧𝐴 → ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ) → ( 𝑧𝐴𝑧𝐵 ) ) )
30 29 alimdv ( ∀ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) → ( ∀ 𝑧 ( 𝑧𝐴 → ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ) → ∀ 𝑧 ( 𝑧𝐴𝑧𝐵 ) ) )
31 df-rel ( Rel 𝐴𝐴 ⊆ ( V × V ) )
32 dfss2 ( 𝐴 ⊆ ( V × V ) ↔ ∀ 𝑧 ( 𝑧𝐴𝑧 ∈ ( V × V ) ) )
33 elvv ( 𝑧 ∈ ( V × V ) ↔ ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ )
34 33 imbi2i ( ( 𝑧𝐴𝑧 ∈ ( V × V ) ) ↔ ( 𝑧𝐴 → ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ) )
35 34 albii ( ∀ 𝑧 ( 𝑧𝐴𝑧 ∈ ( V × V ) ) ↔ ∀ 𝑧 ( 𝑧𝐴 → ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ) )
36 31 32 35 3bitri ( Rel 𝐴 ↔ ∀ 𝑧 ( 𝑧𝐴 → ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ) )
37 dfss2 ( 𝐴𝐵 ↔ ∀ 𝑧 ( 𝑧𝐴𝑧𝐵 ) )
38 30 36 37 3imtr4g ( ∀ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) → ( Rel 𝐴𝐴𝐵 ) )
39 38 com12 ( Rel 𝐴 → ( ∀ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) → 𝐴𝐵 ) )
40 11 39 impbid2 ( Rel 𝐴 → ( 𝐴𝐵 ↔ ∀ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐵 ) ) )