Step |
Hyp |
Ref |
Expression |
1 |
|
elrng |
⊢ ( 𝑌 ∈ ran 𝑅 → ( 𝑌 ∈ ran 𝑅 ↔ ∃ 𝑎 𝑎 𝑅 𝑌 ) ) |
2 |
|
ssbr |
⊢ ( 𝑅 ⊆ ( 𝐴 × 𝐵 ) → ( 𝑎 𝑅 𝑌 → 𝑎 ( 𝐴 × 𝐵 ) 𝑌 ) ) |
3 |
|
brxp |
⊢ ( 𝑎 ( 𝐴 × 𝐵 ) 𝑌 ↔ ( 𝑎 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) ) |
4 |
3
|
simplbi |
⊢ ( 𝑎 ( 𝐴 × 𝐵 ) 𝑌 → 𝑎 ∈ 𝐴 ) |
5 |
2 4
|
syl6 |
⊢ ( 𝑅 ⊆ ( 𝐴 × 𝐵 ) → ( 𝑎 𝑅 𝑌 → 𝑎 ∈ 𝐴 ) ) |
6 |
5
|
ancrd |
⊢ ( 𝑅 ⊆ ( 𝐴 × 𝐵 ) → ( 𝑎 𝑅 𝑌 → ( 𝑎 ∈ 𝐴 ∧ 𝑎 𝑅 𝑌 ) ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝑌 ∈ ran 𝑅 ∧ 𝑅 ⊆ ( 𝐴 × 𝐵 ) ) → ( 𝑎 𝑅 𝑌 → ( 𝑎 ∈ 𝐴 ∧ 𝑎 𝑅 𝑌 ) ) ) |
8 |
7
|
eximdv |
⊢ ( ( 𝑌 ∈ ran 𝑅 ∧ 𝑅 ⊆ ( 𝐴 × 𝐵 ) ) → ( ∃ 𝑎 𝑎 𝑅 𝑌 → ∃ 𝑎 ( 𝑎 ∈ 𝐴 ∧ 𝑎 𝑅 𝑌 ) ) ) |
9 |
8
|
ex |
⊢ ( 𝑌 ∈ ran 𝑅 → ( 𝑅 ⊆ ( 𝐴 × 𝐵 ) → ( ∃ 𝑎 𝑎 𝑅 𝑌 → ∃ 𝑎 ( 𝑎 ∈ 𝐴 ∧ 𝑎 𝑅 𝑌 ) ) ) ) |
10 |
9
|
com23 |
⊢ ( 𝑌 ∈ ran 𝑅 → ( ∃ 𝑎 𝑎 𝑅 𝑌 → ( 𝑅 ⊆ ( 𝐴 × 𝐵 ) → ∃ 𝑎 ( 𝑎 ∈ 𝐴 ∧ 𝑎 𝑅 𝑌 ) ) ) ) |
11 |
1 10
|
sylbid |
⊢ ( 𝑌 ∈ ran 𝑅 → ( 𝑌 ∈ ran 𝑅 → ( 𝑅 ⊆ ( 𝐴 × 𝐵 ) → ∃ 𝑎 ( 𝑎 ∈ 𝐴 ∧ 𝑎 𝑅 𝑌 ) ) ) ) |
12 |
11
|
pm2.43i |
⊢ ( 𝑌 ∈ ran 𝑅 → ( 𝑅 ⊆ ( 𝐴 × 𝐵 ) → ∃ 𝑎 ( 𝑎 ∈ 𝐴 ∧ 𝑎 𝑅 𝑌 ) ) ) |
13 |
12
|
impcom |
⊢ ( ( 𝑅 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑌 ∈ ran 𝑅 ) → ∃ 𝑎 ( 𝑎 ∈ 𝐴 ∧ 𝑎 𝑅 𝑌 ) ) |
14 |
|
df-rex |
⊢ ( ∃ 𝑎 ∈ 𝐴 𝑎 𝑅 𝑌 ↔ ∃ 𝑎 ( 𝑎 ∈ 𝐴 ∧ 𝑎 𝑅 𝑌 ) ) |
15 |
13 14
|
sylibr |
⊢ ( ( 𝑅 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑌 ∈ ran 𝑅 ) → ∃ 𝑎 ∈ 𝐴 𝑎 𝑅 𝑌 ) |