Metamath Proof Explorer


Theorem ssrelrn

Description: If a relation is a subset of a cartesian product, then for each element of the range of the relation there is an element of the first set of the cartesian product which is related to the element of the range by the relation. (Contributed by AV, 24-Oct-2020)

Ref Expression
Assertion ssrelrn ( ( 𝑅 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑌 ∈ ran 𝑅 ) → ∃ 𝑎𝐴 𝑎 𝑅 𝑌 )

Proof

Step Hyp Ref Expression
1 elrng ( 𝑌 ∈ ran 𝑅 → ( 𝑌 ∈ ran 𝑅 ↔ ∃ 𝑎 𝑎 𝑅 𝑌 ) )
2 ssbr ( 𝑅 ⊆ ( 𝐴 × 𝐵 ) → ( 𝑎 𝑅 𝑌𝑎 ( 𝐴 × 𝐵 ) 𝑌 ) )
3 brxp ( 𝑎 ( 𝐴 × 𝐵 ) 𝑌 ↔ ( 𝑎𝐴𝑌𝐵 ) )
4 3 simplbi ( 𝑎 ( 𝐴 × 𝐵 ) 𝑌𝑎𝐴 )
5 2 4 syl6 ( 𝑅 ⊆ ( 𝐴 × 𝐵 ) → ( 𝑎 𝑅 𝑌𝑎𝐴 ) )
6 5 ancrd ( 𝑅 ⊆ ( 𝐴 × 𝐵 ) → ( 𝑎 𝑅 𝑌 → ( 𝑎𝐴𝑎 𝑅 𝑌 ) ) )
7 6 adantl ( ( 𝑌 ∈ ran 𝑅𝑅 ⊆ ( 𝐴 × 𝐵 ) ) → ( 𝑎 𝑅 𝑌 → ( 𝑎𝐴𝑎 𝑅 𝑌 ) ) )
8 7 eximdv ( ( 𝑌 ∈ ran 𝑅𝑅 ⊆ ( 𝐴 × 𝐵 ) ) → ( ∃ 𝑎 𝑎 𝑅 𝑌 → ∃ 𝑎 ( 𝑎𝐴𝑎 𝑅 𝑌 ) ) )
9 8 ex ( 𝑌 ∈ ran 𝑅 → ( 𝑅 ⊆ ( 𝐴 × 𝐵 ) → ( ∃ 𝑎 𝑎 𝑅 𝑌 → ∃ 𝑎 ( 𝑎𝐴𝑎 𝑅 𝑌 ) ) ) )
10 9 com23 ( 𝑌 ∈ ran 𝑅 → ( ∃ 𝑎 𝑎 𝑅 𝑌 → ( 𝑅 ⊆ ( 𝐴 × 𝐵 ) → ∃ 𝑎 ( 𝑎𝐴𝑎 𝑅 𝑌 ) ) ) )
11 1 10 sylbid ( 𝑌 ∈ ran 𝑅 → ( 𝑌 ∈ ran 𝑅 → ( 𝑅 ⊆ ( 𝐴 × 𝐵 ) → ∃ 𝑎 ( 𝑎𝐴𝑎 𝑅 𝑌 ) ) ) )
12 11 pm2.43i ( 𝑌 ∈ ran 𝑅 → ( 𝑅 ⊆ ( 𝐴 × 𝐵 ) → ∃ 𝑎 ( 𝑎𝐴𝑎 𝑅 𝑌 ) ) )
13 12 impcom ( ( 𝑅 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑌 ∈ ran 𝑅 ) → ∃ 𝑎 ( 𝑎𝐴𝑎 𝑅 𝑌 ) )
14 df-rex ( ∃ 𝑎𝐴 𝑎 𝑅 𝑌 ↔ ∃ 𝑎 ( 𝑎𝐴𝑎 𝑅 𝑌 ) )
15 13 14 sylibr ( ( 𝑅 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑌 ∈ ran 𝑅 ) → ∃ 𝑎𝐴 𝑎 𝑅 𝑌 )