Metamath Proof Explorer


Theorem ssres

Description: Subclass theorem for restriction. (Contributed by NM, 16-Aug-1994)

Ref Expression
Assertion ssres ( 𝐴𝐵 → ( 𝐴𝐶 ) ⊆ ( 𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 ssrin ( 𝐴𝐵 → ( 𝐴 ∩ ( 𝐶 × V ) ) ⊆ ( 𝐵 ∩ ( 𝐶 × V ) ) )
2 df-res ( 𝐴𝐶 ) = ( 𝐴 ∩ ( 𝐶 × V ) )
3 df-res ( 𝐵𝐶 ) = ( 𝐵 ∩ ( 𝐶 × V ) )
4 1 2 3 3sstr4g ( 𝐴𝐵 → ( 𝐴𝐶 ) ⊆ ( 𝐵𝐶 ) )