Description: Subclass theorem for restriction. (Contributed by NM, 16-Aug-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | ssres | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ↾ 𝐶 ) ⊆ ( 𝐵 ↾ 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrin | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∩ ( 𝐶 × V ) ) ⊆ ( 𝐵 ∩ ( 𝐶 × V ) ) ) | |
2 | df-res | ⊢ ( 𝐴 ↾ 𝐶 ) = ( 𝐴 ∩ ( 𝐶 × V ) ) | |
3 | df-res | ⊢ ( 𝐵 ↾ 𝐶 ) = ( 𝐵 ∩ ( 𝐶 × V ) ) | |
4 | 1 2 3 | 3sstr4g | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ↾ 𝐶 ) ⊆ ( 𝐵 ↾ 𝐶 ) ) |