Description: Subclass theorem for restriction. (Contributed by NM, 22-Mar-1998) (Proof shortened by Andrew Salmon, 27-Aug-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | ssres2 | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐶 ↾ 𝐴 ) ⊆ ( 𝐶 ↾ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpss1 | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 × V ) ⊆ ( 𝐵 × V ) ) | |
2 | sslin | ⊢ ( ( 𝐴 × V ) ⊆ ( 𝐵 × V ) → ( 𝐶 ∩ ( 𝐴 × V ) ) ⊆ ( 𝐶 ∩ ( 𝐵 × V ) ) ) | |
3 | 1 2 | syl | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐶 ∩ ( 𝐴 × V ) ) ⊆ ( 𝐶 ∩ ( 𝐵 × V ) ) ) |
4 | df-res | ⊢ ( 𝐶 ↾ 𝐴 ) = ( 𝐶 ∩ ( 𝐴 × V ) ) | |
5 | df-res | ⊢ ( 𝐶 ↾ 𝐵 ) = ( 𝐶 ∩ ( 𝐵 × V ) ) | |
6 | 3 4 5 | 3sstr4g | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐶 ↾ 𝐴 ) ⊆ ( 𝐶 ↾ 𝐵 ) ) |