Metamath Proof Explorer


Theorem ssres2

Description: Subclass theorem for restriction. (Contributed by NM, 22-Mar-1998) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion ssres2 ( 𝐴𝐵 → ( 𝐶𝐴 ) ⊆ ( 𝐶𝐵 ) )

Proof

Step Hyp Ref Expression
1 xpss1 ( 𝐴𝐵 → ( 𝐴 × V ) ⊆ ( 𝐵 × V ) )
2 sslin ( ( 𝐴 × V ) ⊆ ( 𝐵 × V ) → ( 𝐶 ∩ ( 𝐴 × V ) ) ⊆ ( 𝐶 ∩ ( 𝐵 × V ) ) )
3 1 2 syl ( 𝐴𝐵 → ( 𝐶 ∩ ( 𝐴 × V ) ) ⊆ ( 𝐶 ∩ ( 𝐵 × V ) ) )
4 df-res ( 𝐶𝐴 ) = ( 𝐶 ∩ ( 𝐴 × V ) )
5 df-res ( 𝐶𝐵 ) = ( 𝐶 ∩ ( 𝐵 × V ) )
6 3 4 5 3sstr4g ( 𝐴𝐵 → ( 𝐶𝐴 ) ⊆ ( 𝐶𝐵 ) )