Description: Restricted existential quantification follows from a subclass relationship. (Contributed by Glauco Siliprandi, 20-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ssrexf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| ssrexf.2 | ⊢ Ⅎ 𝑥 𝐵 | ||
| Assertion | ssrexf | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐵 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrexf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | ssrexf.2 | ⊢ Ⅎ 𝑥 𝐵 | |
| 3 | 1 2 | nfss | ⊢ Ⅎ 𝑥 𝐴 ⊆ 𝐵 |
| 4 | ssel | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
| 5 | 4 | anim1d | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ) |
| 6 | 3 5 | eximd | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ) |
| 7 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 8 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐵 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) | |
| 9 | 6 7 8 | 3imtr4g | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐵 𝜑 ) ) |