Metamath Proof Explorer


Theorem ssrexf

Description: Restricted existential quantification follows from a subclass relationship. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses ssrexf.1 𝑥 𝐴
ssrexf.2 𝑥 𝐵
Assertion ssrexf ( 𝐴𝐵 → ( ∃ 𝑥𝐴 𝜑 → ∃ 𝑥𝐵 𝜑 ) )

Proof

Step Hyp Ref Expression
1 ssrexf.1 𝑥 𝐴
2 ssrexf.2 𝑥 𝐵
3 1 2 nfss 𝑥 𝐴𝐵
4 ssel ( 𝐴𝐵 → ( 𝑥𝐴𝑥𝐵 ) )
5 4 anim1d ( 𝐴𝐵 → ( ( 𝑥𝐴𝜑 ) → ( 𝑥𝐵𝜑 ) ) )
6 3 5 eximd ( 𝐴𝐵 → ( ∃ 𝑥 ( 𝑥𝐴𝜑 ) → ∃ 𝑥 ( 𝑥𝐵𝜑 ) ) )
7 df-rex ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥𝐴𝜑 ) )
8 df-rex ( ∃ 𝑥𝐵 𝜑 ↔ ∃ 𝑥 ( 𝑥𝐵𝜑 ) )
9 6 7 8 3imtr4g ( 𝐴𝐵 → ( ∃ 𝑥𝐴 𝜑 → ∃ 𝑥𝐵 𝜑 ) )