Description: Obsolete version of ssrexv as of 19-May-2025. (Contributed by NM, 11-Jan-2007) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | ssrexvOLD | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐵 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
2 | 1 | anim1d | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ) |
3 | 2 | reximdv2 | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐵 𝜑 ) ) |