Metamath Proof Explorer


Theorem ssrin

Description: Add right intersection to subclass relation. (Contributed by NM, 16-Aug-1994) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion ssrin ( 𝐴𝐵 → ( 𝐴𝐶 ) ⊆ ( 𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 ssel ( 𝐴𝐵 → ( 𝑥𝐴𝑥𝐵 ) )
2 1 anim1d ( 𝐴𝐵 → ( ( 𝑥𝐴𝑥𝐶 ) → ( 𝑥𝐵𝑥𝐶 ) ) )
3 elin ( 𝑥 ∈ ( 𝐴𝐶 ) ↔ ( 𝑥𝐴𝑥𝐶 ) )
4 elin ( 𝑥 ∈ ( 𝐵𝐶 ) ↔ ( 𝑥𝐵𝑥𝐶 ) )
5 2 3 4 3imtr4g ( 𝐴𝐵 → ( 𝑥 ∈ ( 𝐴𝐶 ) → 𝑥 ∈ ( 𝐵𝐶 ) ) )
6 5 ssrdv ( 𝐴𝐵 → ( 𝐴𝐶 ) ⊆ ( 𝐵𝐶 ) )