Metamath Proof Explorer


Theorem ssrmof

Description: "At most one" existential quantification restricted to a subclass. (Contributed by Thierry Arnoux, 8-Oct-2017)

Ref Expression
Hypotheses ssrexf.1 𝑥 𝐴
ssrexf.2 𝑥 𝐵
Assertion ssrmof ( 𝐴𝐵 → ( ∃* 𝑥𝐵 𝜑 → ∃* 𝑥𝐴 𝜑 ) )

Proof

Step Hyp Ref Expression
1 ssrexf.1 𝑥 𝐴
2 ssrexf.2 𝑥 𝐵
3 1 2 dfss2f ( 𝐴𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
4 3 biimpi ( 𝐴𝐵 → ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
5 pm3.45 ( ( 𝑥𝐴𝑥𝐵 ) → ( ( 𝑥𝐴𝜑 ) → ( 𝑥𝐵𝜑 ) ) )
6 5 alimi ( ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) → ∀ 𝑥 ( ( 𝑥𝐴𝜑 ) → ( 𝑥𝐵𝜑 ) ) )
7 moim ( ∀ 𝑥 ( ( 𝑥𝐴𝜑 ) → ( 𝑥𝐵𝜑 ) ) → ( ∃* 𝑥 ( 𝑥𝐵𝜑 ) → ∃* 𝑥 ( 𝑥𝐴𝜑 ) ) )
8 4 6 7 3syl ( 𝐴𝐵 → ( ∃* 𝑥 ( 𝑥𝐵𝜑 ) → ∃* 𝑥 ( 𝑥𝐴𝜑 ) ) )
9 df-rmo ( ∃* 𝑥𝐵 𝜑 ↔ ∃* 𝑥 ( 𝑥𝐵𝜑 ) )
10 df-rmo ( ∃* 𝑥𝐴 𝜑 ↔ ∃* 𝑥 ( 𝑥𝐴𝜑 ) )
11 8 9 10 3imtr4g ( 𝐴𝐵 → ( ∃* 𝑥𝐵 𝜑 → ∃* 𝑥𝐴 𝜑 ) )